A Guide to Creating Custom

Triggers

-By Baseballlkid14
For

Age of Mythology
And

Age of Mythology: The Titans Expansion

Table of Contents...

Section 1: Getting Started.............oooei e e 4
1.1 —ToOls YOU WIll NEEU.........c.oooeeeeeeeeee ettt ettt ettt st st st s b s s 4
1.2 —-Setting UP YOUNr XIML.......cocoo it ettt s st sttt e et s eae e 4
1.3 —Basic Triggering RUIES............cocociiiiie it et et ettt e se e e en e 5
1.4 — Paramaters (Param)...........cccceiviiiieeceeeiietee e et et s es et st s et aenen st eneeees 7
1.5 - Replacing Param Names With Custom Text/Values..............c.ccceevvurvrereeeeseerernenenenn 8
1.6 — WHen tO Add QUOLES.......ceuirereiiereerricntereessessnrsessessasesnsaeecerees seeessaeesssbesssnsesssses soseensns 10
1.7 — Using One Param for TWo CoOmMmMaNds........ccceeuumesesssnnniniinineinieneeneeecenre e s sensesessennas 11
Section 2: CONAILIONS..........c.oooii e e s e e e e en e e 11
2.1 = BASIC RUIES.............ooeeeeeeeeeere ettt e ete et e ete et ettt ee stestesse s aebees e e stestesneanseeseansens 11
SeCtion 3: EFfEcCts.......cccooi it ae e e aeeaaees 12
3.1 = BASIC RUIES..............ooeeeeeeeeee ettt ete e ete e sttt e e stestesaeensaebees e ba e ste e sreanesenennes 12
Section 4: Expressions and Commands.............cccoueeiveirieiecense e e 12
4.1 = EXPIESSIONS. ...ttt e et e ee e ee et e ettt teeteeaeeesaesse sttt beteeaetaeaeeaeeaaeeeeeas 12
B e oo Yo 4T3 F=1 Lo £ PR S 13
4.3 =Kb CoOmMMANS.........ccoieee e e e e e ae e e e e e s 13
4.4 — List of tr (Trigger) CoOmMmMANS..............cooouiiiiiiee e seaae e s 13
4.5—Listof kb Commands................ormmiiiiiiiii e 16
Section 5: Extra Things That May Help.........ccccooriie e e 16
5.1-Good Rules of ThUMb................coo e et e 16

5.2 — Opening The triggertemp.xs (TT Users Only)...........cccevvveieereveeineiiesecerereee e 16

Section 6: More Advanced (But Still Simple) Features...........cccccooeivirieiieeie e, 17

6.1 — if, FOr, AN @ISE.......o oottt et e st e resne b et e 17
6.2 —The LOOP FUNCHION........cooiiece ettt st st st st e e e e e s e neenes 19
6.3 =NOT, OR, @NA AND..........ccoooee ettt s te st e vt e be st st saeeae sere et senten e enn sre st s 20
Section 7: Troubleshooting (“Why Doesn’t My Trigger work?”)..........ccccuee.... 23
.1 = XML EFFOXS.......c.ooeeee ettt et ettt e st et st et et st st sbe sebeeaeesaeeeanen see 23
7.2 = THIQQEOE LOCK........c.ooooeeeeeeeeeeeeete et ettt et et s et st e st saese st e ses e e ae s e seneneens 24

7.3 =D0eSN’t WOrK Right.................ccovooooeeieeete ettt eeaee e s st st sre e e e ,.25

Section 1: Getting Started

1.1 —-Tools You Will Need

In order to create custom triggers, you will need some text program that
can save into other file types such as XML. Notepad is the easiest one to use and
comes standard on all PCs. It should also be on most Macintosh computers.
That’s pretty much all you’ll need to start making your own custom triggers!
WordPad may also be used to make your own triggers but | prefer to use
Notepad. Both of these programs can be found at: Start Menu = (All) Programs
= Accessories on a standard PC. Another program you can use is C++. It’s perfect
for making XML files and it’s free to download on Microsoft’s official website. But
for this tutorial, | am going to show how to make your own triggers in Notepad.

1.2 — Setting Up Your XML

Before you get started, it is best if you have some prior knowledge in XML
programming and how it works. If not, don’t worry. Before you get started, there
are some basic rules you should know. The most reliable program you should use
is Notepad. It is a free program that comes with most computers. You should get
used to using notepad and get away from other text creators such as Microsoft
Word.

The first of which is how trigger document should be set up:

<?xml version = "1.0"?>

<trigger version="2">
<Conditions>

</Conditions>

<Effects>

</Effects>

</trigger>

This is how your trigger (XML) document should be set up. Just copy and
past this into Notepad or write it manually. The <?xml version = "1.0"?> needs to
be included in all XML documents. You can also include addition information
behind the "1.0" and before the ?. In the files contained within the data folder, it
includes encoding="UTF-8" in between those two. When creating triggers, you
DO NOT want to include this. <trigger version="2"> needs to be included in
trigger documents to let the game know it should be included in the trigger list.
Any condition you make needs to be in after this tag: <Conditions> (A tag is term
used for something within < and > in an XML document), but before this tag:
</Conditions>. The same works for Effects (Put effects between <Effects> and
</Effects>. Then you need to end the XML document by placing </trigger> at the
end. A good rule of thumb is that any tag created also has to be ended. A tag
being created is something like: <Tag> (E.G. <Effects> or <Conditions>). A tag
being ended looks something like: </Tag> (E.G. </Effects> or </Conditions>). It
has to contain / (slash) in immediately after the <. The tag MUST be ended with
the same one it started as (E.G. you cannot end <Effects> with </Conditions>). If
you do, your XML will break down and your triggers won’t show up in the editor. |
will talk more about this in Section 7.

1.3 — Basic Triggering Rules

There are many rules you need to follow in order for your trigger to work
properly. In the Command, each value that changes the outcome is separated by
commas (,). If you don’t have the correct amount of commas specified to each
command, your triggers won’t work. The values must also be in the right order or
it will not work properly, but the triggers will not cause all your triggers to stop
working in some, but not all cases. You can, however change it so it does nothing
in most cases. In these next steps, | will guide of how to change this so it does
nothing.

<Effect name="$$22484$$Counter:Add Timer">

<Param name="Name" dispName="$$22365$$Name" varType="string">countdown</Param>

<Param name="Start" dispName="$$22485$$Start" varType="long">30</Param>

<Param name="Stop" dispName="$$20926$$Stop" varType="long">0</Param>

<Param name="Msg" dispName="$$20056$$Message" varType="stringid">The End is Near</Param>

<Param name="Event" dispName="$$22362$$Trigger" varType="event">0</Param>

<Command>trCounterAddTime("%Name%", %Start%, %Stop%, "%Msg%", %Event%);</Command>
</Effect>

This is the basic Counter: Add Timer Effect. Now you should notice that all

the characters within the two Command tags (<Command and </Command>) are
similar to the Param name’s. You can change the name of any Param name as

long as you do on in the Command as well. For Example:
<Param name="Name" dispName="$$22365$$Name" varType="string">countdown</Param>
| can change the Param name of this to any name | chose:
<Param name="Counter" dispName="$$22365$$Name" varType="string">countdown</Param>
But you also have to change it in the Command for it to still work:
<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%", %Event%);</Command>

This is just another way of writing the Counter: Add Timer Effect that will
accomplish the same thing. Although this is good to know, | have yet to show you
how to make something do nothing. You need to substitute a value for the part
of the command you don’t want to do anything with whatever does nothing. In
the case that you’re dealing with a number, -1 is the most common thing to use.
And believe it or not, an event is a number to the trigger engine. It doesn’t
retrieve the trigger name that you see, it get’s the trigger id. So we are just going
to make it so it has a Name, a Start Time, and End Time, a Message, but no event
is fired after the timer is complete. | realize this will not help anyone but it’s good
for understanding how these things work. | will now show you how to make no
event fire:

<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%", -1);</Command>

You probably noticed it’s the same exact thing except instead of %Event%,
it’'s-1. You now have no need for the Event param so you can just delete that
line (From <Param to </Param>. There are things you should watch out for still:

<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%", %-1%);</Command>

You don’t want to this because it will look for a Param name called -1
(<Param name="-1"...) , it will not fire no event.

<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%");</Command>

Don’t just delete this the -1 or %Event% because it now has 1 less comma
which we talked about earlier is not a good thing. Here is what the final product
should look like:

<Effect name="$$22484$$Counter:Add Timer">
<Param name="Counter" dispName="$$22365$$Name" varType="string">countdown</Param>
<Param name="Start" dispName="$$22485$$Start" varType="long">30</Param>
<Param name="Stop" dispName="$$20926$$Stop" varType="long">0</Param>
<Param name="Msg" dispName="$$20056$$Message" varType="stringid">The End is Near</Param>
<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%", -1);</Command>
</Effect>

You would usually see event in the editor, you now wont because that

Param is gone. You may also substitute other values into that other than -1 but |
will get more in detail with that in Section 1.5.

If you change the dispName, you will also have to get rid of the $8’s and the
numbers within them. This also applies to the <Effect name and the <Condition
name. You can still get rid of them even if you don’t change the name and
nothing will become of to make it easier to read and interpret but not change
what it does or looks like in the editor, all you have to do is change the normal

code to:

<Effect name="Counter:Add Timer">
<Param name="Counter" dispName="Name" varType="string">countdown</Param>
<Param name="Start" dispName="Start" varType="long">30</Param>
<Param name="Stop" dispName="Stop" varType="long">0</Param>
<Param name="Msg" dispName="Message" varType="stringid">The End is Near</Param>
<Command>trCounterAddTime("%Counter%", %Start%, %Stop%, "%Msg%", -1);</Command>
</Effect>

1.4 — Parameters

A parameter is what shows up in the editor in terms of places to type, or
buttons. It allows the user to type in custom values which will be used by the
trigger engine to determine what to do (E.G. If you have the trigger Move to Unit,
with Attack Move on yes, the unit will attack but if it’s on no, the unit will just go
to the other unit without attacking. This is just one example of how Parameters
work.) You should never make more than 7 Params because it will mess up the
trigger screen (if you try, you will see what | mean), 7 is the maximum amount
you should have.) You define all the traits in a Parameter on a line set up
somewhat like this:

<Param name="Player" dispName="$$22301$$Player" varType="player">0</Param>

<Param defines it as a parameter so it can be used later in Commands.
name="Player" gives it a name the Command has to use in order for it to be
affected. The name is within percent signs (%Player%). If the name was Money,
it should look like %Money% in the command. The param name can be anything
you want it to be but you can’t have two params with the same name.
dispName="552230155Player" is what it looks like in the editor. In the editor,
you'll notice the $522301SS doesn’t show up. That is the number id that is
located in the (xpack)language.dll of what it will say in the editor. If someone
has a Spanish game installed, it will look different in the .dll and in the editor as a
result. You cannot add a random number in there but you can delete it
altogether so it only says dispName="Player" and it will look no different in the
editor. varType="player" determines what kind of button, list, place to type, etc.
will be. In this case it will be a dropdown list of players from 1-10(it is a bug that it
doesn’t include 11 and 12). Here is a list of all the VarTypes there are:

string — a place to type any characters
stringid — same as string

long — a place to type in numbers

unit — select a physical unit that is on the map

operator — a dropdown list containing: >, >=, ==, <=, and <
float — a place to type in numbers but decimal points can be used
area — a place to select on the map (a location)

player —a dropdown list of players 0-10(0 = gaia)

tech — a dropdown list of all the techs

protounit — a dropdown list of protounits

resource — a dropdown list of food, wood, and gold
alliance — a dropdown list of ally, neutral, and enemy
group — a dropdown list of armies

bool —an OnOff switch

kbstat — a dropdown list of stats (E.G. tribute sent)

god power —a dropdown list of god powers

camerainfo — a place that captures an area on the screen but not a physical x,y,z position(a position marking how
far left, high, and right a unit is from the corner of the map)

sound — a filename starting from the sound folder

event — a dropdown list of triggers

If you put a non-existent varType in it, that line will not be anything in the
editor so be careful. And finally, >0</Param> is what the value is pre-set to in the
editor so in this case, the player is automatically set to gaia until manually
modified. It also ends the tag so the XML doesn’t crash. You may also notice in
some triggers it’s ended like /> instead. This makes it start with nothing in the
editor.

1.5 — Replacing Param Names With Custom Text/Values

After learning about Parameters in the last section you should know how
they work pretty well. Depending on what the user puts in, the result will differ.

When making triggers you can manually substitute your own text/values into
where the parameter will be. Here is an example of what | mean:
<Effect name="Ally">
<Param name="Player1" dispName="Player" varType="player">0</Param>
<Param name="Player2" dispName="Is Allied To Player" varType="player">0</Param>
<Command>trPlayerSetDiplomacy(%Player1%, %Player2%, "ally");</Command>
</Effect>
| changed the "%Status%" with "ally" so instead of letting the user manually
chose. Some have quotes (") around the percent signs (%) while some do not. In
most cases, if the varType is a string, it will have quotes but this does too. You if
you change the VarType to a string, and it doesn’t originally have quotes, it
doesn’t mean you should add them. Each command functions in a different way.
For example:

<Command>trPlayerSetDiplomacy(%Player1%, %Player2%, "ally");</Command>

The trPlayerSetDiplomacy command needs 2 commas and three
values/choices. It is set up like:

<Command>trPlayerSetDiplomacy(, , "');</Command>

You can add your own values in there, or add a Param by putting a the Param
name in between two percent signs. For every tr Command included in the
typetest.xml, you should know how it is set up by looking at it (E.G. you should

know Army Deploy goes ("","", ,,,) because that is how it is set up.

1.6 — When To Add Quotes

Adding quotes when/where needed is a major part in getting your trigger
to work. If you forget quotes, or add them where they shouldn’t be, you’re
triggers will be likely to break down. If you’re using c++, you don’t even need to
read this paragraph (although you still need to with the next) because it
automatically add them for you. You need to add quotes after the following,
always: Effect name=, Param name=, dispName=, and VarType=. Nothing good
will become of it if you don’t.

Here is the part that c++ doesn’t automatically cover, in the commands and
expressions. It is easiest to know this if you copy-past-change from other triggers

because all you have to do is edit the values. If the %ParamNameHere% has
guotes around it, you keep them. If it doesn’t, you don’t add them as a good rule
of thumb.

1.7 — Using one Param For Two Commands

To make it so you don’t have to use more than one parameter that says
“Player” or something, you can use the same parameter for more than one thing,
as long as you want the value to be the same for both. For example:

<Effect name="Grant God Power And Tribute">
<Param name="Player" dispName="Player" varType="player">0</Param>
<Param name="PowerName" dispName="Power" varType="godpower">default</Param>
<Param name="Count" dispName="Uses" varType="long">1</Param>
<Param name="ResName" dispName="Resource To Tribute" varType="resource">food</Param>
<Param name="Amount" dispName="Amount To Tribute" varType="long">100</Param>
<Command>trTechGodPower(%Playerl%, "%PowerName%", %Count%);</Command>
<Command>trPlayerTribute(%Player%, "%ResName%", %Amount%, 0);</Command>
</Effect>

This grants a god power to and tributes from the same player with only 1
parameter. It’s pretty simple to understand. The last part of the tribute
command | switched with 0 so they would tribute to player 0 instead of a user-
defined player. | went more in depth with this in section 1.5.

Section 2: Conditions

2.1 — Basic Rules

There are a few rules you have to follow when making conditions. First of
all, for a condition to be a condition, it needs to start with <Condition name-=... to
classify it as a condition. Your code must also has to be between the
<Conditions> tag and the </Conditions> end tag. Most everything about
conditions are described in the section on parameters and the Expressions and
Commands section.

Section 3: Effects

3.1 — Basic Rules

Effects are very similar to conditions. They are set up like <Effect name-=...
and must be ended with </Effect>. It also has to be between the <Effects> start
tag and the </Effects> end tag for it to show up in the editor.

Section 4: Expressions And Commands

4.1 — Expressions

An Expression is the kind of tag used in conditions. An expression waits for it to
return true before the Effect(s) are fired. You cannot use Effect commands in
Expressions although you can use Condition commands in Effects. | will get more
in detail with this in section 2.2. You may not have more than 1 Expression per
condition but there are ways around this which | will greater explain in section
6.2. To start off, | will teach you how a basic condition works:
<Condition name="$$22294$$Distance to Unit">

<Param name="SrcObject" dispName="$$22295$$Source Units" VarType="unit">default</Param>

<Param name="DstObject" dispName="$$22296$$Target Unit" VarType="unit">default</Param>

<Param name="0p" dispName="$$22297$$Operator" VarType="operator">==</Param>

<Param name="Dist" dispName="$$22298%$Distance" VarType="float">0</Param>
<Command>trUnitSelectClear();</Command>

<Command loop=""loopParm="SrcObject">trUnitSelect("%SrcObject%");</Command>

<Expression>trUnitDistance ToUnit("%DstObject%") %0p% %Dist%</Expression>
</Condition>
This is the Condition of Distance to Unit. The Expression trUnitDistanceToUnit is
calculates the distance the selected unit is to a given point. Outside of the
parenthasees, it has two user-defined parameters (%0p % and %Distance%).
%0p% defines whether it the distance a unit is to a point is greater than (>),
greater than or equal to (>=), equal to (==), less than or equal to (<=) or less than
(<). The %Dist% is the amount compared to the distance a unit is from a point.

This condition will activate the effects in the editor if/when the value returned by

the distance a unit is to another unit is whatever operator the user entered
compared to the value of the distance entered.

4.2 — Commands

Commands act a little differently than Expressions. They are used mainly in
effects but can also be used in Conditions. It tells the game what to do depending
on what the Command is. trPlayerGrantResources is the command to grant a
player a given amount of resources.
<Effect name="$$22457$$Grant Resources">
<Param name="PlayerID" dispName="$$22301$$Player" varType="player">0</Param>
<Param name="ResName" dispName="$$22455$$Resource" varType="resource">food</Param>
<Param name="Amount" dispName="$$22456$$Amount" varType="long">100</Param>
<Command>trPlayerGrantResources(%PlayerlD%, "%ResName%", %Amount%);</Command>
</Effect>
This effect grants a resource type depending on what was selected for the Param
called ResName. It grants it to whoever the Param called PlayerID is and grants a

sum of whatever the Param known as Amount is.

4.3 — kb Commands

There are 4 different kinds of commands included with Age of Mytholgy. There
are ai commands, tr commands, kb commands, and rm commands. ai commands
stand for artificial intelligence , or computers that automatically play the game. tr
commands are trigger commands used for triggers. I’'m not really sure what kb
commands stand for but they can be used when creating an Al, a random map, or
a trigger. An rm command is used for making random maps. ai and rm commands
are not compatible with triggers but kb are. They include a wide variety of
possible commands that can be used. Some can get very confusing, however.

4.4 — List of tr (Trigger) Commands

trUnitSelectClear() - De-selects all units (This must be done before any units are
selected)

trUnitSelect("%SrcObject®%") - Selects a unit for use in a later command/expression.

trTime() — Returns the amount of time passed since the beginning of the game (in seconds).

trTimeMS() — Returns the amount of time passed since the beginning of the game (in
milliseconds).

trUnitDistanceToUnit("%DstObject%") — Calculates the distance a a selected unit is to another
unit.

trCountUnitsinArea("%DstObject%",%Player%," %UnitType%",%Dist%) — Counts the amount
of units are within a given area around another unit.

trUnitDistanceToPoint(%DstPoint%) — Calculates the distance a selected unit is to a given point
on the map.

trUnitAlive() — Checks to see if the selected unit is alive.
trUnitDead() — Checks to see if the selected unit is dead.

trUnitVisToPlayer() — Returns true if a Human player is has their camera looking on a unit, It
has to be in their LOS but if it is in their LOS, it doesn’t automatically fire, it waits until the
player looks there.

trUnitHasLOS(%PlayerlD%) — Returns true if the selected unit is within the LOS of the player.

trTechStatusActive(%PlayerlD%, %TechlD%) — Checks to see if the tech is available by a given
player.

trTechStatusResearching(%PlayerID%, %TechlD%) — Returns true if the given player is
researching a given tech.

trUnitPercentComplete() — Returns a value of how much the selected unit is completed (in
percent).

trUnitPercentDamaged() — Returns a value in percents of how much a selected unit is
damaged.

trPlayerUnitCount(%PlayerlD%) — Returns the amount of units a player has.

trPlayerBuildingCount(%PlayerlD%) — Returns the amount of buildings a player has.

trPlayerUnitAndBuildingCount(%PlayerlD%) — Returns the amount of units and buildings
combined a player has.

trPlayerCountBuildingInProgress(%PlayerlD%, "%ProtoUnit%") — Counts the amount of
buildings a player is building.

trPlayerResourceCount(%PlayerID%, "%Resource®%") - Returns a value of the
amount of a certain resource a player has.

trPlayerDefeated(%PlayerID%) - Returns true if the specified player has been
defeated.

trPlayerAtPopCap(%PlayerID%) - Returns true if the player is active (the player has
neither won nor lost.)

trPlayerGetPopulation(%PlayerID%) - Returns a value of the players population.

trunitGetContained() - Counts how many units are garrisoned in the selected unit
(defined on the previous two lines).

trUnitIsSelected() - Returns true if the selected unit is selected by the player (it only
works in single player mode).

trUnitTypeIsSelected("%ProtoUnit%") - Returns true if any protounit is selected.

trPlayerGetDiplomacy(%Player1%, %Player2%) - Returns the diplomacy status that
the first player is to the second player (Ally, Neutral, Enemy).

trUnitIsOwnedBy(%Player%) - Returns true if the selected unit is owned by the
specified player.

trGetWorldDifficulty() Returns the difficulty of the game (0=easy, 1=moderate, 2=hard,
3=titan).

trCinematicAbort() - Returns true if spacebar or escape is pressed while the cinematic
mod is on.

trIsGadgetVisible("%Gadget%") - Returns true if a gadget is visible to the player.

trUnitOnLush(%Lush%,%Player%) - Returns true if the selected unit is on the gaia
lush of a specified player.

trUnitGetIsContained("%UnitType%") - Returns true if the selected unit is garrisoned
in a protounit (E.G. Relic is in Temple)

trChatHistoryContains("%Text%", %PlayerID%) - Returns true if the chat history
contains specified text from a given player.

trGetStatValue(%PlayerID%, %StatID%) - Returns the value of a stat (E.G. Enemy
Units Killed).

And many others... all you have to do is open the typetest.xml and look on for th
expression.

4.5 — List of kb Commands

All the kb commands can be found here:

C: = Program Files 2 Microsoft Games = Age of Mythology = Docs = aom ai
script help file

Then all you have to do is scroll down to the bottom where all the kb commands
are listed. Every kb command can be used in triggers. Once you master kb
commands, your world in triggers will be vastly expanded in terms of possible
triggers you can create.

Section 5: Extra Things That Might Help

5.1 — Good Rules of Thumb

Some good rules of thumb when creating triggers are:
Always close your tags (<(TAG)> with </(TAG)>)!!!
Use Quotes after an = sign (Param name =...) but not in a Command/Expression.

Only make a few triggers at a time, then see if there are any errors before making
more.

Don’t use more than 1 <Expression> tag per conditions. Use none for effects.

Save as an XML when you’re done (.xml). To open an xml, Right Click >
Open With = Notepad or... open the xml by Double Clicking, Right Click >View
Source.

5.2 — Opening The triggertempt.xs (TT Users Only)

Opening the triggertemp.xs file may or may not be helpful to you. Itis
located at: Start Menu = (My) Documents - My Games - Age of Mythology =
Trigger2 - triggertemp.xs. You can open it by opening a blank notepad
document, navigating yourself to the file, selecting All Files (*.*) and clicking on
the xs file. It shows how all your triggers work in the map called ~testing which is
automatically saved when you playtest a scenario. It will show exactly what the
Effect (Command) or Condition (Expression) does with already filled in
parameters so there are no % signs anymore. It may not be helpful to you but it’s
there if you ever need it.

Section 6: More Advanced (But Still Simple) Features

6.1 —if, for, else, and break

The commands if, for, and else can be very useful when creating triggers. |
will first explain how to use the if Command. It is used in a command tag (E.G.
<Command>if....</Command>) to see if a condition is true at that given point in
time, if it is, the effects after it will activate, if it isn’t, the effects after it will NOT
activate. Here is an example:

<Command>if(trPlayerResourceCount1, "Gold") > 50)trChatSendSpoofed(1, "Player 1 has more than 50 Gold");</Command>

This line of code would send chat saying player 1 has more than 50 Gold if player
1 has more than 50 gold, if player 1 doesn’t have at least 51 gold, nothing will
happen. Unlike conditions, the if command does not wait for it to become true, it
just checks to see if it’s true at a given time, if it isn’t but it does eventually
become true, it will never activate UNLESS the trigger it is in is active and looped.
This is where the else command comes into play. It will activate if that if
command is not true so it would be set up something like:

<Command>if(trPlayerResourceCount1, "Gold") > 50)trChatSendSpoofed(1, "Player 1 has more than 50 Gold");</Command>
<Command>else</Command>

<Command>trChatSendSpoofed(1, "Player 1 doesn’t have more than 50 Gold"));</Command>

This effect will always send a chat but if the player has 51+ gold, it will say that, if
he doesn’t have 51+ gold, it will say he doesn’t have it. The final command is for,
it is a very useful Command to lessen the work of many things. It was used in a
short version of Modify All Protounits, and it is also used in Player Range triggers.
For sets a variable to more than one number. Itis set up like:

<Command>for(Variable=Number,>ALowerNumber)</Command>

The Variable can be any letter(s) you chose. The Number and ALowerNumber
determine what the value of the variable is. If the Number is 10 and the
AlLlowerNumber is 1, it will set the variable to all numbers in between
there(1,2,3,4,5,6,7,8,9,10). This is helpful for using an effect on more than one
person and lots of other stuff as well. Now that you know how to set a variable to
a number, all you have to do is use it in another command like so:

<Effect name="Kill All God Powers For Everyone">

<Command>for(p=12;>0)trPlayerKillAllGodPowers(p);</Command>

</Effect>
All you have to do is substitute it in like any other custom value and you’re done.
This method makes p players 0-12, or all the players in the game and then kills
their god power so everyone loses their god powers. The only thing left now is
the break command. It is a relatively simple command but isn’t used as much as
the others. The break command stops the variable (from for) from being reaching
other numbers by stopping the loop if it the command says for it to. Thatis not
very easy to understand because | am not good at explaining this very well.
Perhaps an example will help you to understand it’s nature and use in triggers:

<Effect name="552244385Send Chat">
<Param name="PlayerID" dispName="552244455From Player" VarType="player">0</Param>
<Param name="Message" dispName="552005655Message" VarType="stringid">default</Param>

<Command>for(p=12;>0)if(trPlayerAtPopCap(p))break trChatSend(p, "%Message%");</Command>
</Effect>

This will send a chat from 1 person who is at their max pop. That person starts in
numerical order because of how the for command was set up. If player 1 isn’t at
pop cap, it will check if player 2 is. If he isn’t, it will check for player 3, and so on.
Once it finds someone that is at their pop cap, it will set p to that value. If the
break wasn’t there, then it would send chat from anyone and everyone that was
at their pop cap.

6.2 — The Loop Function

The loop function is a relatively simple topic. Itisn’t like the trigger loop that
makes the trigger repeat itself. Before you learn what it does, you should know
how to use it. { and } are the symbols used for loop. { begins a loop while } ends
a loop. If you begin a loop but never end it, ALL TRIGGERS WILL BREAK so be
careful! This eliminates the use of {player.....(#)} triggers because the game will
read it differently. The loop function tells the game to use what is before the { for
everything within them. This may seem confusing as it is hard to explain but it is a
simple topic. An example would be:

<Command>for(t=12;>0) {</Command>

<CommandstrPlayerKillAlGodPowers(t); }</Command>

This uses the variable of t for everything within the loop. If you are familiar with
the for Command, then you should know that it sets the variable of t to every
number equal to or lower than 12 and equal to and higher than 0. This gives t
many different answers... t is equal to 0,1,2,3,4,5,6,7,8,9,10,11, and 12 all at the
same time. Some things to watch out for:

<Command>for(t=12;>0) {}</Command>
<CommandstrPlayerKillAllGodPowers(t);</Command>

Or

<Command>for(t=12;>0)</Command>
<Command>trPlayerKillAllGodPowers(t);</Command>

You shouldn’t do this because t is only equal to all numbers 1-12 for everything
within the loop, which in this case is nothing. It will just kill all the god powers of t
which isn’t assigned a number so it might cause trigger lock, or just nothing will
happen.

<Command>for(t=12;>0) {</Command>
<CommandstrPlayerKillAllGodPowers(t);</Command>

<Command>for(t=12;>0)</Command>

<Command>trPlayerKillAlGodPowers(t); }</Command>

This will cause trigger breakdown because the loop isn’t properly made, in one it’s
not ended and in the other, it’s never started. Always make sure you have the
same amount of {'s as }'s in your trigger. Conditionals also work in this fashion.
You use the if command and an expression then use the loop function to make
everything within happen if the conditional is true. Everything else that is outside
the loops will happen always and normally.

6.3 — NOT, OR, and AND

The NOT, OR, and AND commands can be very useful when creating
conditions, and in some cases (that use the if function), effects as well. If you are
familiar with the boxes in the editor that you can check, you should already
understand what they are. If you don’t then I’d suggest you learn by searching
guides. The NOT command returns true if two parts are not equal. This may
seem confusing at first. Say you have something like this:

<Expression>trPlayerResourceCount(%Player%, %ResName%) != %Count%</Expression>

This will generate the amount of a certain resource a player has, and if the player
has any amount of resource other than the specified count, it will return true.
The OR command returns true if any of the expressions are met. Finally, the AND
is the default for conditions and returns true if all the expressions are true. Now
that you know what each one is very basic, it’s time you learn how to add them to
triggers. The command for NOT is /=, the command for OR is | | (shift-\), and the

command for AND is &&. We will operate on conditions for this tutorial, but
works similar in effects containing if. | will first teach you how to use NOT. Like |
said earlier, NOT is used by !=, but in some cases, you can switch == true with ==
false and it will accomplish the same thing. For the purpose of using !=, | am
going to use an expression that uses a == (or %0p%) but not with a true at the
end. Player Unit Count is a perfect example:

<Condition name="$$22323$$Player Resource Count">
<Param name="PlayerID" dispName="$$22301$$Player" VarType="player">0</Param>
<Param name="Resource" dispName="$$22324$$Resource" VarType="resource">food</Param>
<Param name="0p" dispName="$$22297$$Operator" VarType="operator">==</Param>
<Param name="Count" dispName="$$22321$$Number" VarType="long">1</Param>
<Expression>trPlayerResourceCount(%PlayerlD%, "%Resource%") %0p% %Count%</Expression>
</Condition>
This uses an Operator (%0p% (Param #3)) so the not command works perfectly in
this case. For the NOT to work properly, you have to switch an == operator with a
I= operator. This returns true if the value is anything but equal, it can be greater,
or less than. Here is what your trigger should now look like:
<Condition name="Player Resource Count (Is NOT)">
<Param name="PlayerID" dispName="$$22301$$Player" VarType="player">0</Param>
<Param name="Resource" dispName="$$22324$$Resource" VarType="resource">food</Param>
<Param name="Count" dispName="$$22321$$Number" VarType="long">1</Param>

<Expression>trPlayerResourceCount(%PlayerlD%, "%Resource%") = %Count%</Expression>
</Condition>

| replaced %0p% with /= and deleted the “Op” parameter because there is no

longer any use of it. You can use this on any trigger that has an expression set up
like:

<Expression>(Anything Can Go Here) %0p% (Anything Can Go Here)</Expression>

It can also work if %0p% is any operator (>,=>,==,<=,<). Where “(Anything Can Go
Here)” is, you can type in a value, or an expression which get’s a value, such as the
Player Resource Count. You can do one side with a value and another with an
expression, or both with expressions. If both sides have a value, then you’d
probably always know whether it will be met or not, rendering it un-useful.

Now | am going to show you how to use the OR command. It is
represented by | | between two expressions. Here is an example:
<Condition name="All Units Or Buildings Dead">
<Param name="PlayerID" dispName="$$22301$$Player" VarType="player">0</Param>
<Expression>trPlayerUnitCount(%PlayerlD%)==0 Il trPlayerBuildingCount(%PlayerID%)==0</Expression>
</Condition>
This will return true if either all the players units or all the players buildings are
dead. This is a relatively simple subject so | see no need to further explain.

The final thing | have to cover on this topic is AND. It will fire if all the
conditions (expressions) are true. Itis represented by &&. But and works the
same way as OR. The only difference is that the XML will break down when && is
inserted. There is a way around this however...

<Condition name="Player Resource Count2">
<Param name="PlayerID" dispName="$$22301$$Player" VarType="player">0</Param>
<Param name="Resource1" dispName="$$22324$$Resource" VarType="resource">food</Param>
<Param name="Resource2" dispName="And" VarType="resource">wood</Param>
<Param name="0p" dispName="$$22297$$Operator" VarType="operator'>==</Param>
<Param name="Count" dispName="$$22321$$Number" VarType="long">1</Param>
<Expression>trPlayerResourceCount(%PlayerlD%, "%Resource1%") %0p% %Count% &&

trPlayerResourceCount(%PlayerlD%, "%Resource2%") %0p% %Count%</Expression>
</Condition>

Under normal circumstances, this would work if the player has enough of the
“Resourcel” Param and the “Resource2” Param. But because of the way XML
files are set up, this would break the file. The CDATA code may be used to evade
the error. CDATA is a code that tells the xml to read anything within it differently
so it doesn’t get errors, but if the code is incorrect, it wouldn’t matter anyway.
CDATA is set up like: <!/[CDATA[INSERT CODE HERE]]> where the INSERT CODE
HERE would be where you type in the code that would have a XML-unfriendly
character (such as the &&) The trigger should now look like this:

<Condition name="Player Resource Count2">
<Param name="PlayerID" dispName="$$22301$$Player" VarType="player">0</Param>
<Param name="Resource1" dispName="$$22324$$Resource" VarType="resource">food</Param>
<Param name="Resource2" dispName="And" VarType="resource">wood</Param>
<Param name="0p" dispName="$$22297$$Operator" VarType="operator'>==</Param>
<Param name="Count" dispName="$$22321$$Number" VarType="long">1</Param>
<Expression><|[CDATA[trPlayerResourceCount(%PlayerlD%, "%Resource1%") %0p% %Count% &&

trPlayerResourceCount(%PlayerlD%, "%Resource2%") %0p% %Count%</Expression>
J]></Condition>

This trigger is now usable in game!

Section 7: Troubleshooting (“Why Doesn’t My Trigger Work?”)

7.1 — XML Errors

In this section, | am going to explain all the XML errors | have gotten and explain
how to avoid and fix them. There are many errors that can happen in an XML, but
there is always a reason for it. Here is a list of errors and how to fix them:

End tag '(Name of Tag)' does not match the start tag '(Name of Tag)'. — This error occurs when
your tags do not match. Chances of getting this error are slim when using
c++. Say you have a trigger like this:

<Effect name="$$22525$$Set Player Won">
<Param name="Player" dispName="$$22301$$Player" varType="player">0</Param>
<Command>trSetPlayerWon(%Player%);</Command>

You forgot to end the XML with a </Effect> at the end of the trigger. Because you
didn’t end the tag, the XML will break down. This will also occur if say you didn’t
end one of the Param, Command, or Expression tags correctly. Capitalization
does count and contributes to this error.

An invalid character was found in text content. - ThiS means a character that is not
supported by XML was found in your document. This can happen if you
paste a quote from Microsoft office or another program that makes quotes

like: " or ”instead of ". There are also other unsupported characters which it
will show you under the error message in blue.

A string literal was expected, but no opening quote character was found. — This means you
forgot to add a quote where it was expected by the XML parser. It should
show you where you need to add them below it in blue.

Whitespace is not allowed at this location. — ThiS means you probably added an & or an
< do your document. It will show the character you used in blue just below
it. To work around this (with <) just use &It; where you want the < to be.
Or you can use the CDATA trick. It could also mean you put a space
between the beginning of the tag and the core of the tag (E.G. instead of
doing <Effect>, you did < Effect >).

If you have any other errors, you're on your own. Searching Google for the
error is always effective. Another effective way to find the location of your error
is by converting the Error-XML to XMB with AOMed which can be downloaded on
AoM Heaven. When you convert it, it will give you the exact location of the error
so you can easily fix it.

7.2 —Trigger Lock

If you experience a trigger lock (when all your triggers break as a result of 1
trigger), there is something wrong with your code, or it’s just not meant to be
right. One thing that causes it is starting a loop with a { but never ending it with a
}. For every loop you make, it should also be ended. If you have 3 {’s, you
should have 3 }'s, if you expect the trigger to function properly. Another
thing that could cause it is replacing invalid values in the Command or
forgetting quotes in the Command. If you have quotes there initially and
you get rid of them, the trigger will break all others. If you enter an invalid
value in place of a parameter, it will also break. For Example:

<Effect name="$$22423$$Convert">
<Param name="SrcObject" dispName="$$22421$$Unit" varType="unit">default</Param>

<Command>trUnitSelectClear();</Command>
<Command loop=""loopParm="SrcObject">trUnitSelect("%SrcObject%");</Command>
<Command>trUnitConvert(All Players);</Command>
</Effect>
This wouldn’t work because where All Players (Some random text | thought
up) is, it is meant to accept a number, not text. That is why this one would break
all triggers. Unless you used the for command to set the variable “All Players” to

a number, it wouldn’t work.

Say you added quotes around a something that shouldn’t have quotes, that
would also destroy all your triggers. E.G.:
<Effect name="$$22423%$Convert">
<Param name="SrcObject" dispName="$$22421$$Unit" varType="unit">default</Param>
<Param name="PlayerID" dispName="$$22301$$Player" varType="player">0</Param>
<Command>trUnitSelectClear();</Command>
<Command loop=""loopParm="SrcObject">trUnitSelect("%SrcObject%");</Command>
<Command>trUnitConvert("%PlayerlD%");</Command>
</Effect>
That command isn’t supposed to accept quotes and therefore will break
down. If you don’t add quotes where they are needed, that would also break the

trigger.

Using an invalid tag would also cause all your triggers to stop working.
Using a tag like <Result> would result in trigger breakdown because the scenario
doesn’t know how to read that tag. Also, not using correct capitalization could
cause this (E.G. <command> instead of <Command>).

7.3 — Doesn’t Work Right

If you’re trigger passes the XML and trigger lock with no errors, all should
work right. In some occasions, however that is not the problem. Although the
code is set up to be read by the xml correctly and the scenario as well, there really
are many things that can cause them to work improperly. Sometimes, nothing
happens, while other times, something happens completely wrong. If you
experience this, | suggest looking the in the triggertemt.xs file (make sure you

test the map you want it on, or save your map as ~testing. Scroll down until you
find your trigger and that might help you see what went wrong in it.

