AN INTRODUCTION TO MODDING

FOR

AGE OF MYTHOLOGY

&

AGE OF MYTHOLOGY: THE TITANS

by
STEPHEN CAINES

Page 1

Contents

0. CONDITIONS OF USE AND DISCLAIMER 4
1. INTRODUCTION 5
2. GETTING STARTED 6
2.1 SETTING UP A WORK AREA......coiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 6
2.2 EXTRACTING THE SOURCE FILEScoiiiiiiiiiiiiiiee ettt e e et e e e e e s enaaaneeeeeeseennannees 7
3. CHARACTER PROTO DEFINITIONS 11
3.1 CONVERTING THE PROTO(X) FILE ...ttt e 11
32 UNDERSTANDING CHARACTER DEFINITIONSceitiitureriieeeeeiiieeeeeeeeeesiiteereeeeeseeessnsseeeeesseessnresseeesennnes 12
33 DEFINING DIFFERENT CHARACTER ACTIONSciiiiiittitiieeeeeeiieeeeeeeeeeeeiaereeeeeseeesasseeeeeeseenanseeeeeesennnes 20
3.4 CREATING A NEW CHARACTERuvvtiiieeiiiiittreeeeeeeeeeitreeeeeeeeesesseeeseeeeeseisssseseseseesstssseseeessensssseeeeeeseennes 23
4. THE ROLE OF MODELS 26
5. ANIMATIONS 28
5.1 ANIM FILE SYNTAX ottttttttttttittieieeeeeeeeeteeeeaeaeaeeestaasasaaaaessasassaaasssssaaasssssaassssssassssssssssssssssssnsssnsssssnsnnnnnsnen 31
5.2 DETAIL OF AN ANIM FILE ..ottt ettt asssssssssasasssnsssssnsnsnsnnnen 32
5.3 MODIFYING AN ANIM FILE ...oitiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeae ettt sassssasasssssssssssssasnsssssnsnsnnnnnes 36
5.4 MORE ADVANCED ANIM FEATURESoiiuttiiiiiie ettt e et e e e e e eeaaae e e e e e e ssenaaaneeeeeeseennes 38
6. TEXTURES 41
6.1 CONVERTING TEXTURES TO BITIMAPS ...ttt ittt et e e e e e eeaae e e e e e e s enaaaaeeeeeeseennes 43
6.2 CREATING A NEW BODY TEXTUREccciiiiitiiiiiieeeeeeiiieeeeeeeeeeeesiaeeeeeeeeeseaaaeeeeeeeseseaanseseeesseesanseseeeesennans 45
6.3 CREATING A NEW HEAD TEXTURE ...ccciiiiiiitiiiiiieeeeeeiieieeeeeeeeeesaeeeeeeeeeeaaaaeeeeeeseeeasaaseseeesseesaaneeeeeesennnes 48
6.4 CREATING A NEW SHIELD TEXTUREccoitiuuttiiieeiieiieeeeeeeeeesitaeeeeeeeeesessaseseeesesesssseseeesseessnsnesseessennnes 49
6.5 TCONS ettt e e e e e e et e e e e e et e e e e e e e ———taee e e e e ———aaaeeeeaaaas 50
7. IN-GAME TEXT 52
7.1 ADDING NEW IN-GAME TEXTutttiiiieeiieiiieiee e eeeiiteee e eee et eeeeeeeaaaaeeeeeeeeeaareeeeeeeeetaaneeeeeeeeeaes 52
8. HISTORIES 56
9. SOUNDS 57
10. CHECKING OUR NEW UNIT 59
11. BUILDINGS 62
11.1 ENABLING AN EXISTING BUILDING TO TRAIN A NEW CHARACTER........ccuuuuuuurererereeererereenesrnssrsesesennnnnes 62
11.2 USING BUILDING TO TRAIN UNITS ...eeiiieiiiiiiiieeieeeeeeeeiieeeeeeeeeeeiaeeeeeeeeeeeaaaeeeeeesseenssnseseeesseenssnseseeessnnnnes 65
11.3 MODIFYING A BUILDING'S PROTO DEFINITIONccoiiuuuriiiieeiiiiiereeeeeeeeeiieeeeeeeeeeesaneeeeeesseessnseeseessennnns 66
11.4 CREATING A NEW BUILDING PROTO DEFINITION.cuuuviiiieiiiiiiireieeeeeeeiieeeeeeeeeeesaneeeeeeeeeensaneeseeeeseennns 66
11.5 CREATING A NEW BUILDING ANIM........ccoiiiiiuutriieeeeieiiieeeeeeeeeeeiiaereeeeeeeeeeasseeeeeeeeesassesesesseenssssseeessnennns 69
11.6 CUSTOMISING THE BUILDING........cuuviiiiiiiiiiiiieeeeeeeeeeiiieeeee e eeeeteee e e e e eeeaaaeeeeeeeeesaaaaeeeeeeeeenaanseeeeeeeeeaes 70
11.7 ADDING THE BUILDING'S IN-GAME TEXT.uvvtiiiiiiiiiiiieieeeeeeeeiiereee e e eeeiareeeeeeeeesaaaeeeeeeeeentaaneeeeeeeeeans 72
11.8 ADDING THE BUILDINGS HISTORYvvviiviiieiiieiittieeeeeeeeeeteeeeeaeeaeesaasseeessssssssssssssssssssssssssssssssnssssssssssssnnes 73
11.9 CHECK THE NEW BUILDINGovvvvtttittttttitieeeieeeeeaeaeaeeeaeasaessnssssnnrne 73
12. ENABLING PROTO UNITS 76
12.1 CONVERTING THE TECHTREE(X) FILE.......cccouiiiiiiiiiiiie e 76
12.2 ENABLING NEW PROTOUNITS......uuuutiiiiiiiiiiiiieeieeeeeeeiieee e e e eeeeeaeeeeeeeeeeenaaaseeeeeeseesaaseeesesseesasseeeeessannnes 77
12.3 TESTING THE COMPLETED MODcoiiiiiiiiiiiiiiieee et eeeee e e e et e e e e e e eeaaaaeeeeeeseenaaaeeeeeeseennes 79
13. MAKING MORE NEW UNITS 81

Page 2

13.1 IT'S A TOUGH WORLD OUT THEREccotiiiutiiiieeeeeeiiitreeeeeeeeeecitaeeeeeeeeeeeaaareeeeeeeeetaaseeeeeeeeensaaseeeeeeeeennes 81

14. TECHNOLOGIES 82
14.1 WHAT ARE TECHNOLOGIES?vuttettttttteeeteeeeaeeseeasessassnes 82
14.2 GENERAL DETAILS....cutttttttttttttettteeeeeeteaeeseeesesesssrsssrnnnes 83
14.3 PREREQUISITES ...uvtiiieiieeitiiieeeeeeeeiitteeeeeeeeeeitaeeeeeeeeeeessaseeaeeeeaesasseeeseeeeessssssaeeeseetsssseseseesaaassssseeeeeeaanses 85
) R) 32y Y N O RPR 88

TA4A] TYPE EffECLS.c.uvoaneeeaiiieeeeeeeee ettt s et e st e et e st e e et e e s sbeessbeessbeessseesssaessseesssaennseesssaennseens 89
T4.4.2 ATOUNE EffECES ..ottt ettt et e st e e st e e s sbeesaaeessbaessseessbaensseesssaensseesssaennseens 90
T4 3 ACHON EJfECES ..voneveeiieeeie ettt ettt e et e s et e e st e et e e s abeesabeesabeesaseesnbeensseessbeennseesssaennseens 93
T4 A4 STATUS EJCES c.veenvveeiiieeeieeeeeeee ettt ettt ettt e s e et e e st e e et e e s ab e e e abeesabeenaseesnseennseesssaensseesssaennseens 94
T4.4.5 GENETATOT EffECES .ouveaeieiiieeeie ettt ettt ettt s e st e e st eesabeesnbeenaseessbeenaseesssaennseens 94
L4.4.6 CUITUTE EffECLS ..ottt ettt ettt et e st e st e st e e s bt e sabeesnbeesabeesabaesane 95
) I =5 (@) 516 (01 OO SUPUTTRN 95
14.6 CREATING A NEW TECHNOLOGYvvvtuuuuuueuutueeueeeeseseeeseesssessssessssssssssssssssssssssssssssssssmsssses———————— 96
14.6.1 Making the Technology ACCESSIDIE.ccccccoocuiiiiniiiiiiiiiiiiieieeeeeeee e 99
14.6.2 Adding the IN-Game TeXTcccoceiuiriiriiiiiiiiiieieeeeeeeeee ettt 99
14.6.3 TECHNOLOZY ICOM ...ttt e ettt et e et e e aa e e s abe e s sbeessseessbaensseesnsaennseens 99
14.7 TESTING THE TECHNOLOGYcceitieuuuriieeeeeieiieeeeeeeeeeesiateseeeeeeessasaseeesesseessssseeseseseesaaseseeesseesssseseeeees 100
14.8° CREATING MORE TECHNOLOGIESceetitiiiiiiueeeeieeeeeeiieteeeeeeeeeeeaaeseeeeeessessasseeeeesseesaseesseesseesnsssseeeess 100

15. RELICS 102

16. CIVILISATIONS 103

17. MINOR GODS 108

18. GOD POWERS 111
18.1 PLACEMENT GOD POWERS......ccoiitttiiieeieiieiieeeee e eeeettee e e e e e et e e e e e e eeetaaaeeeeeeeeentasseeeeeeeeenarreeeeeeeeeaes 113
18.2 UNIT SWAP GOD POWERScoiiiiiiiiiieiiee e eeeeieeee e eeeeetee e e e e et e e e e e e eeetaaaeeeeeeeeentaaaeeeeeeeeenarrereeeeens 114
18.3 EPIC GOD POWERScetitittttttiteeeeeeeteeeteeea ettt sttt s s s s s saatassessssssnsnsssnsnssnnsnnnnn 115
18.4 CREATING YOUR OWN GOD POWERScuvtuittiitiiteiuteeeeeeeesteeseeessesasessssssssssssssssssssssssssssssssssssssesssnsrsnn 117

19. RANDOM MAPS 118
19.1 ENABLING A RANDOM MAP FOR NEW CIVILIZATIONSuvuvvvetueereeeeeeeseeesessesssesssssssesssssssssssssrsners.. 118

20. ARTIFICIAL INTELLIGENCE 123

21. WHERE TO NEXT? 124

Page 3

0.

Conditions of Use and Disclaimer

In using this Guide to Age of Mythology Modding, the user acknowledges:

a)
b)

c)

d)

e)

That they are a licensed user of Age of Mythology or Age of Mythology The Titans;

That the Terms of Conditions of their License Agreement with Ensemble Studios are
in no way changed as a result of the use of the techniques described in this guide;

That they are an Individual and that any modifications made using the techniques
described in this Guide will be used solely for their own personal use, or the use of
similarly licensed individuals;

That the information contained in this guide is the author's interpretation of how to
perform the modifications described in this Guide and the author has not relied on
any information from Ensemble Studios in deriving these interpretations;

That the author's interpretations are just that and the user shall make their own
judgment on the validity of these interpretations and take all responsibility for any
consequence of these interpretations being false. The author in no way warrants the
accuracy of the information provided;

This guide may not be used for training purpose (either paid or free of charge) by any
organization or group (either for profit, not for profit, or charitable) without the written
consent of the author. Such consent will not be unreasonable withheld but will subject to
written assurance from such a group that any third party involved in such training will be
bound to similar conditions and acknowledge similar disclaimers as outlined above.

For further information or clarification, please contact outsidethedots@optusnet.com.au.

Page 4

1. Introduction

Undertaking a modding project in Age of Mythology can be a frustrating affair. There is so
much that can be done and lots of advice on specific areas of modding available through
online forms. However, for a newbie modder, or an experienced modder trying to
remember how they got something to work last time, I thought it may be useful to write a
guide to modding that makes no assumptions on past experience, starts with the basics and
tries to give a feel for how the various parts of the game hang together.

This guide is in no way complete, as I am yet to understand all the possibilities available for
modifying AoM, and every week someone seems to find a new way to extend the Age of
Mythology playing world, but it is hoped that this guide will at least get you started on your
modding career.

This Modding Guide uses the following tools:

= Ykkrosh's AOM Data File Converter — this application is essential for extracting the
individual files provided with AOM and for converting files between source and
compiled versions — a brilliant piece of code.

= Vachu's AOM Game Text Editor — this application lets you add to the list of text
messages used in the game.

The guide also assumes you have access to a text editor (notepad will suffice) and a tool for
editing bitmaps. In the early stages of modding, MSPaint will suffice (particularly if you just
want to cut and paste existing artwork), however if you want to start creating artwork from

scratch it is highly recommended that you get a more advanced tool such as GIMP.

Finally, this guide has been written using AoM The Titans file names, however the same

principles apply to standard AoM modding. The only difference is in the names of the data
files involved and these will be highlighted at the start of each chapter.

Page 5

2.

Getting Started

Serious modding in AoM will result in the creation of a large number of files and can get
confusing, so the first thing to do is to create a separate area for modding activity. Once a
mod is ready for testing, you can then copy them to the appropriate AoM folder. This will
save a lot of frustration when a mod fails, as it will be easier to identify the problem file and
you will not have to reinstall AoM (and lose any other modifications you have done or
downloaded).

The following approach is recommended:

2.1

Setting up a Work Area

Create a New Folder and call it AoM Mods.

In this new AoM Mods folder, create two sub-folders called:
a) Source Files;

b) Mod Files;

In each of the two folders from step 2, create 10 sub-folders called:

a) ai

b) anim

c) bit maps

d) data

e) god powers
f) history

g) models

h) rm

i) sound

j) textures
In each of the two textures folders, create a new sub-folder called icons.

You may have noticed that with the exception of the Bit Maps folders, these folders
have the same names as those used in the standard AoM installation. The idea is
that we will install the relevant source files under their appropriate folders in the
Source Files folder, and then edit and save our modifications into the appropriate
folder in the Mod Files folder. This may sound like over-kill, but when hundreds of
files are involved, it makes it much easier to manage the mod installation and
fallback process.

If you plan a major modification (such as a new civilization) I would also make a
third set of folders where you can store the latest "working release”, in this way the
worst that can happen if you really mess things up, is that you only risk losing the
latest modification.

Once your folders are set up, run the installation programs for Ykkrosh's AOM

Data File Converter and Vachu's AOM Game Text Editor included with this
guide installing them into your AoM Mods folder.

Page 6

The following files/file structure should be in place

]

AoM Mods

- Age of Mythology Center 1KB Internet Shortcut
- data.vdf 357KB OLD File

- compile 757KB VHT File

- Text Editor 380KB Application

- Read Me 2KB Text Document

- aomed 1372KB Application

. Mod Files

ai

anim

bit maps

data

god powers

history

models

rm

sound

textures

) icons

] Source Files

) ai

] anim

] bit maps

] data

] god powers
] history
]

]

]

]

poopopobobon

models

rm

sound
textures

) icons

2.2 Extracting the Source Files

6.

We now need to copy the relevant source files from the original AoM folders to our
Source Files folders. For the time being, we are not going to worry about ai or rm
files.

In AoM, the individual program files are stored in collections of like files called .BAR
files. In the first instance, we want to copy these files into their correct Source

Files folder where we can extract the individual program files. MNote: that if after
reading through this chapter, you feel confident with what we are trying to achieve
you can omit this step (6) and extract the files directly from the standard AoM folders.
This recommended approach is to avoid extracting the files into the AoM folders by
mistake (rather than the new folders where we want to do our mods). However to
follow this approach you will need at least 1Gbyte of free disk space. To copy the
required .BAR files:

Page 7

b)

c)

d)

9)

Find the default AoM folder it should be C:\Program Files\Microsoft
Games\Age of Mythology, expand the folder and you will see it contains a
number of sub-folders, some with the same names we used in our own filing
system.

From the anim folder within the AoM default folder copy the ANIM.BAR and
ANIM2.BAR files to your Source Files\anim folder. If you are not using
the Titans Expansion, you will not have the second file (ditto for the other
copies below).

From the data folder within the AoM default folder copy the DATA.BAR and
DATA2.BAR files to your Source Files\data folder.

From the god powers folder within the AoM default folder copy the
GODPOWERS.BAR and GODPOWERS2.BAR files to your Source
Files\god powers folder.

From the data folder within the AoM default folder copy the MODELS.BAR
and MODELS2.BAR files to your Source Files\models folder.

From the sounds folder within the AoM folder copy the SOUNDS.BAR and
SOUNDS2.BAR files to your Source Files\sounds folder.

From the textures folder within the AoM folder copy the TEXTURES.BAR
and TEXTURES2.BAR files to your Source Files\textures folder.

The next step is to extract the individual program files for each file type. To do this:

a)

Launch Ykkrosh's AOM Data File Converter by double clicking the
relevant icon in your AoM Mods folder. It will bring up the following:

Data File Converter .?J-}\,

|
Direct file conversion I Bulk conversion | Advanced options I |

Set input data file | |

b)

Folder to extract data into | | |

Fead data file |

Siet output data file I | |

Folder to resd data from I I |

\ WWirite data file I !
e e

In the first instance, we need to extract the individual files from the .BAR files
we have just copied to our Source Files sub-folders. To do this click on the
Set input data file button.

Page 8

You will then be asked to Select Data File for Input and be presented with
a screen for browsing your file system. Click through until you reach the
AoM Mods\Source Files\anim folder; select the ANIM.BAR file and click
open.

Follow the same process to select the Folder to extract data into field.
We want this to be the same as the source folder.

|
Direct file conversion | Bulk conversion | Advanced options I

Set input data file | Inﬁr-.ﬂ\,f DocumentsStephentdoh Mods\Source Files\animianiim bar

Folder to extract data inta | Igsﬁﬂtephenwy Documents\=tephentboh ModsSource Fileshanim |

Read data file |

Set output data file i In'l.l‘-.d':.f DocumentstStephenisob Mods'Source Fileshanimianim bar

Folder 1o read data from I Igsﬁstephenﬁmy DocumentzStepheni®ohd ModsSource Filestanim

1
Wiite data file I !

Click the Read data file button and a Log window will open and a list of files
will appear as they are extracted from the .BAR file, ending this the line
Finished!. Close the Log Window ([X1) and click on the anim directory and
you will see a long list of text files in the for character name_anim. These
are the anim (or animation) files for Age of Mythology.

Repeat this process, this time selecting the ANIM2.BAR file. This will
extract the AoM Titans Expansion anims.

To extract the other files we just repeat the same process for the other .BAR
files:

= DATA.BAR and DATA2.BAR files in your Source Files\data folder

* GODPOWERS.BAR and GODPOWERS2.BAR files to your Source
Files\god powers folder.

= MODELS.BAR and MODELS2.BAR files to your Source Files\models
folder.

= SOUNDS.BAR and SOUNDS2.BAR files to your Source Files\sounds
folder.

= TEXTURES.BAR and TEXTURES2.BAR files to your Source
Files\textures folder.

Page 9

Remembering each time to click Set Input Data File; browse through to the
appropriate folder; select the required file and Open it; select the Folder to
extract data into; click Read data file, and check that the Log is OK.

d) Once you have successfully extracted all the files, you can delete the .BAR
files (copied in step 6) if space is a premium. DO NOT DELETE THE .BAR
FILES IN THE AOM FOLDERS.

Note that the .XMB and .DDT files you have extracted are not in an editable format
at this stage. This is what the Direct file conversion option is for. We will convert
these as required, in later chapters.

If you followed the instructions in this chapter, you should now have a working
environment in which you can start modding.

Page 10

3.

Character Proto Definitions

The first place we will start modding is in the creation of new characters for use in game
play. This can be done from scratch by creating new models for completely new characters,
however at this stage we will start by modifying an existing character.

3.1

Converting the PROTO(X) File

In AoM and AoMTT all characters available within the game are defined in the PROTO.XMB
file (AoM) or PROTOX.XMB file (AoMTT). To add a new character we first need to convert
the appropriate file into a format we can modify. To do this:

1)

2)

3)

4)

Launch Ykkrosh's AOM Data File Converter by double clicking the relevant icon
in your AoM Mods folder, and click the Direct file conversion button.

|
Direct file converzion | Bulk conwverzion | Advanced options | |

Set input data file | |

Folder to extract data into | | |

Read data file |

Set autpout data file I | |

Folder 1o read data from I I |

inrite data file I !

e

You will then by asked to Select data file for input. Go to your Source
Files\data folder, locate the PROTOX.XMB file (AoMTT) or PROTO.XMB file (AoM),
and click Open.

A pop-up window will inform you that it is Converting to XML — select an output
file in the following window. Press the OK button, and then press the Save
button on the following window. This will save the file to the default file name —
PROTOX.XML. The conversion will start and a pop up window will advise
Conversion Finished when complete. Press OK and close ([X]) the AOM Data
File Converter.

Copy this file from your AoM Mods\Source Files\data folder to your AoM

Mods\Mod Files\data folder. You can retain the version in Source Files as an
original.

Page 11

You now have a file PROTOX.XML that can be edited using Notepad or any other .XML
editor.

3.2 Understanding Character Definitions

For the time being, open this file using Notepad and you will see some header information,
followed by a list of units representing the characters, buildings, embellishments and special
effects used in the game. In the standard files, there are 800 units defined in the PROTOX
file for AOMTT and 622 units defined in the PROTO file for AoM. In this chapter, we are
solely concerned with defining new characters.

To begin with, we will look at a basic infantry unit Greek Hero Jason (PROTOX unit 542,
PROTO unit 478).

The following is a copy of the PROTOX definition of Jason.

<unit id="542" name="Hero Greek Jason">
<dbid>2296</dbid>
<displaynameid>16898</displaynameid>
<footprint>Footprint Military </footprint>
<icon>Hero G jason</icon>
<maxcontained>1</maxcontained>
<containedattack>0.0500</containedattack>
<initialhitpoints>250.0000</initialhitpoints>
<maxhitpoints>250.0000</maxhitpoints>
<los>16.0000</los>
<portraiticon>Hero G Jason Icon 64</portraiticon>
<obstructionradiusx>0.7000</obstructionradiusx>
<obstructionradiusz>0.7000</obstructionradiusz>
<soundvariant>Hack</soundvariant>
<birthreplacement>Hero Birth</birthreplacement>
<deadreplacement>Hero Death</deadreplacement>
<ballisticsplashproto>Splash</ballisticsplashproto>
<ballisticbounceproto>Dust Medium</ballisticbounceproto>
<formationcategory>Mobile</formationcategory>
<maxvelocity>4.3000</maxvelocity >
<movementtype>land</movementtype>
<turnrate>18.0000</turnrate>
<unitaitype>HandCombative</unitaitype>
<populationcount>2</populationcount>
<trainpoints>9.0000</trainpoints>
<buildlimit>1</buildlimit>
<allowedage>1</allowedage>
<cost resourcetype="Food">100.0000</cost>
<cost resourcetype="Gold">50.0000</cost>
<bounty resourcetype="Favor">2.1600</bounty>
<bountyfactor resourcetype="Favor">1.0000</bountyfactor>
<rollovertextid>16601</rollovertextid>
<rolloverbonusdamageid>17277</rolloverbonusdamageid>
<rolloveruseagainstid>17352</rolloveruseagainstid>
<rollovercounterwithid>17571</rollovercounterwithid>
<rolloverupgradeatid>17589</rolloverupgradeatid >
<buttonpos column="0" row="0"></buttonpos>
<armor damagetype="Hack" percentflag="1">0.25</armor>
<armor damagetype="Pierce" percentflag="1">0.35</armor>
<armor damagetype="Crush" percentflag="1">0.99</armor>
<allowedculture>Greek</allowedculture>

Page 12

<unittype>LogicalTypeVolcanoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAutoAttack</unittype>
<unittype>LogicalTypeCanBeHealed </unittype>
<unittype>LogicalTypeAffectedByRestoration</unittype>
<unittype>LogicalTypeAffectedByVortex</unittype>
<unittype>LogicalTypeMilitaryUnitsAndBuildings</unittype>
<unittype>LogicalTypeParticipatesInBattlecries</unittype>
<unittype>LogicalTypeTornadoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAttack</unittype>
<unittype>LogicalTypeValidFlamingWeaponsTarget</unittype>
<unittype>LogicalTypeConvertsHerds</unittype>
<unittype>LogicalTypeValidBoltTarget</unittype>
<unittype>LogicalTypeFimbulWinterTCEvalType</unittype>
<unittype>LogicalTypeEarthquakeAttack</unittype>
<unittype>LogicalTypeFavoriteUnit</unittype>
<unittype>LogicalTypeValidSpyTarget</unittype>
<unittype>LogicalTypeGreekHeroes</unittype>
<unittype>LogicalTypeValidShiftingSandsTarget</unittype>
<unittype>LogicalTypePredatorsAttack</unittype>
<unittype>LogicalTypeNeededForVictory</unittype>
<unittype>LogicalTypeHandUnitsAutoAttack</unittype>
<unittype>LogicalTypeValidFrostTarget</unittype>
<unittype>LogicalTypeLandMilitary</unittype>
<unittype>LogicalTypeImplodeAttack</unittype>
<unittype>LogicalTypeValidSPCUnitsDeadCondition</unittype>
<unittype>LogicalTypeAffectedByHealingSpring </unittype>
<unittype>LogicalTypeUnitsNotBuildings</unittype>
<unittype>LogicalTypeRangedUnitsAutoAttack</unittype>
<unittype>LogicalTypeVillagersAttack</unittype>
<unittype>LogicalTypeHandUnitsAttack</unittype>
<unittype>LogicalTypeRangedUnitsAttack</unittype>
<unittype>LogicalTypeTartarianGateValidOverlapPlacement</unittype>
<unittype>LogicalTypeGarrisonOnBoats</unittype>
<unittype>LogicalTypeValidForestFireTarget</unittype>
<unittype>LogicalTypeValidMeteorTarget</unittype>
<unittype>LogicalTypeMinimapFilterMilitary</unittype>
<unittype>LogicalTypeldleHero</unittype>
<unittype>LogicalTypeldleMilitary</unittype>
<unittype>Unit</unittype>
<unittype>UnitClass</unittype>
<unittype>Military</unittype>
<unittype>Hero</unittype>
<flag>ObscuredByUnits</flag>
<flag>CollidesWithProjectiles</flag>
<flag>DontRotateObstruction</flag>
<flag>ShowGarrisonButton</flag>
<flag>CorpseDecays</flag>
<flag>ApplyHandicapTraining</flag>
<flag>HideGarrisonFlag</flag>
<flag>Tracked</flag>
<contain external="1">Relic</contain>
<action name="HandAttack">
<param name="MaximumRange" value1="0.1"></param>
<param name="Damage" type="Hack" valuel="9"></param>
<param name="DamageBonus" type="MythUnit" value1="7"></param>
<param name="Rate" type="All" value1="5.0"></param>
<param name="DamageBonus" type="SetAnimal" valuel="3"></param>
</action>
<action name="PickUp">
<param name="TypedRange" type="Relic" value1="1"></param>
</action>
<action name="DropOff">
<param name="TypedRange" type="AbstractTemple" valuel="1"></param>
<param name="Rate" type="AbstractTemple" valuel="1"></param>

Page 13

</action>
</unit>

While at first sight it may appear very complex, the structure of the character definition is
simply made up of a number attributes and options that determine now the unit will behave.
The following summarizes what each part of the definition is for:

<unit id="542" name="Hero Greek Jason">

Every unit requires a unique unit id and these unit ids must be sequential. For example,
the first unit id you will add will 801 for AOMTT and 623 for AoM. The format of the
definition begins with <unit id = ...> and ends with </unit> (at the bottom of the definition)
and you will notice that each attribute in the definition uses the same syntax (e.g.
<dbid>...</dbid>).

Whenever adding or modifying character definitions, remember you must have a unique in
sequence id and the syntax is mandatory. If not when you try and convert the file back to
an .XMB file for use in the game, it will fail to compile. The name is used to identify the
appropriate anim file, in this case Hero Greek Jason_anim.txt. Note that the name that
appears in game is not always the same as the proto unit name.

<dbid>2296</dbid>

The dbid needs to be unique (though not sequential) the first available dbid is 2848 for
AoMTT and 2653 for AoM.

<displaynameid>16898</displaynameid>

The displaynameid field is a reference to a text id contained in the xpacklanguage.dll file
(AOMTT) or language.ddl file (AoM) and is discussed in more detail in Chapter 7. The
number needs to be unique, but you can have gaps in the numbering. If you start your own
text numbering at 60000 you will leave plenty of room for any future ES enhancements.

The displaynameid field points to the text entry that will appear in game or in the editor
when placing new units. There is also an editornameid field that can be used if you wish
to use a different name in the scenario editor, if making a civilization you could use this to
include a prefix, which would allow you to keep your new units together in the menus when
using the Scenario Editor to place your new units.

<footprint>Footprint Military</footprint>

You may have noticed that when walking over snow or going across water units leave
footprints (defined earlier in the PROTO/X definitions). This field simply tells the game
which of the various footprint options will be used. There are a large number of footprint
options available including Hoofprint (medium animals), Oar Footprint (for boats), Footprint
Villager (for villagers), Footprint Animal Small (goats, pigs), Footprint Cavalry (cavalry),
Footprint Animal Large (giraffe, elephant), and a number of specialized footprints such as
Flaming Footprint, Footprint Scarab, Footprint Wheel, Footprint Siege. Generally the
footprint defined for your base unit will be the one to use.

<icon>Hero G jason</icon>

In game, you will notice that a picture of a character, technology and so forth is displayed in
the information box or in help menus. These are called icons and come in varying sizes
from 32x32 bits to 256x256 bits. The icon field refers to the name of the file in the
\textures\icons folder that will be used in specific situations (depending on how big the icon
is on a specific screen. We will learn how to create icons in Chapter 6. Unfortunately, Jason

Page 14

does not adopt the standard naming format, in most cases icons use a naming convention

of unitname Icon size, e.g. this icon reference should have been Hero G Jason Icon 32,

with the larger portrait icon defined below being Hero G Jason Icon 64. If you keep to this
naming standard you can set up the proto definition and create the icons later.

<maxcontained>1</maxcontained>

The maxcontained field is more typically used for buildings or boats that can garrison
people, but it is also required for units that may be required to contain other units (for
example carrying a relic). You can use this field for other special features such as the ability
for one character to carry another (e.g. I have used it to allow a mounted version of a
Legolas character to garrison Gimli). Just set the amount to the number of units you want
to be able to garrison.

<containedattack>0.0500</containedattack>

The containedattack field defines what percentage of the units attack capability will be
added to the attack strength of a unit it is garrisoned in (if the GarrisonBonus flag is set).
Generally logic would dictate that ranged units such as archers would have a higher
containedattack (they can shoot out windows) while hand attack units would do little to
increase the strength of the building they are in.

<initialhitpoints>250.0000</initialhitpoints>
<maxhitpoints>250.0000</maxhitpoints>

These fields set the initial and maximum hitpoints for a character in its original format (e.g.
they do not include any additional hitpoints the character may receive because of
technology upgrades). Usually they are set to the same amount, but you could set the
maxhitpoints to a higher number and use a regenerate action (see below) to improve their
hitpoints from a lower starting level. The hitpoints can be any amount you choose, but to
avoid making an unreasonably strong character you should look at other similar units and
not go overboard.

<los>16.0000</los>

The los field determines the unit's line of site in its original format. The higher the number
the further it sees. There is no limit to los, but again a unit that has line of site over the
entire game field is of little interest in @ game (just use the cheat if you want to see
everything).

<portraiticon>Hero G Jason Icon 64</portraiticon>

This is a larger version of the characters icon and refers to a file of the given name in the
\textures\icons folder.

<obstructionradiusx>0.7000</obstructionradiusx>
<obstructionradiusz>0.7000</obstructionradiusz>

The obstructionradiusx/z fields determine how much space a character "blocks" and are
used by the game to stop characters walking through each other (or buildings being built
through other buildings or characters). The larger the numbers, the larger the obstruction
area. Itis usually best to stick the values contained in the base unit you use for modding.
If you start increasing these values you will end up with a situation where units have
difficulty navigating around the game board and getting trapped between units.

<soundvariant>Hack</soundvariant>

Page 15

<birthreplacement>Hero Birth</birthreplacement>
<deadreplacement>Hero Death</deadreplacement>
<ballisticsplashproto>Splash</ballisticsplashproto>
<ballisticbounceproto>Dust Medium</ballisticbounceproto>

The above fields define the basic soundsets the game will use in association with this
character, in order the default sound file used when the unit attacks, is born/dies and is
attacked. Generally, the ones that existed from the base protounits can be retained. They
can also be added to in the anim definitions and _snd file for the unit.

<formationcategory>Mobile</formationcategory>

The formation category determines how the unit will behave in group situations, and can be
defined as Protected, Mobile, Ranged and Body. As far as I can tell these definitions
mean — Protected, the unit will stay at the center of the group so that it can be protected by
the units surrounding it; Mobile — the unit can move independently of the group, Ranged —
in attack situations the unit can hang back from the group and fire from a distance; Body —
the unit will stay in a solid formation within the group. In general, weak units are protected;
heroes, cavalry and other fast units are Mobile, ranged units such as archers, slingers, and
war ships are Ranged and standard infantry are Body.

<maxvelocity>4.3000</maxvelocity>

The maxvelocity field defines how quickly the unit will move in its initial form (pre any tech
upgrades). In general cavalry move the fastest, followed by light infantry and villagers,
heavy infantry, and siege weapons. You can set the amount as high as you like — a
maxvelocity of 100 would allow a unit to cross a standard game map in 3-4 seconds.

<movementtype>land</movementtype>

The movementtype field tells the game how the unit will move; the options are air, land
and water. Basically "air" can go anywhere whereas "land" and "water" are restricted from
movement over the other (e.g. land can't cross water).

<turnrate>18.0000</turnrate>

As far as I can tell turnrate is used to set the priority of movement within the game — a
higher turnrate equates to a higher priority and hence should be used for priority units
(though I stand ready to be corrected on this). In general, stick to the rate defined for the
base protounit.

<unitaitype>HandCombative</unitaitype>

This field defines what type of unit this prototype is for Al purposes. This is discussed
further in Chapter 14, but in general the Al needs to know the unit type so it can create the
right balance of units. The main unitaitypes are Civilian — the unit will be selected to
gather resources; Hand Combative, Ranged Combative, RangedSiege, Ram, Scout —
the unit will be selected based on the military AI goals in place. If the unitaitype field is not
consistent with what the unit actual does it will just make the Al act inappropriately.

<populationcount>2</populationcount>

This field defines how many units towards the population limit the protounit will use. In
general, stronger units have a higher population count. This amount can be zero, or a
fraction is you so wish.

<trainpoints>9.0000</trainpoints>

Page 16

<buildlimit>1</buildlimit>
<allowedage>1</allowedage>

The above fields provide some basic info about unit creation. The trainpoints defines how
long it will take to build (higher the number, longer the training time). The buildlimit defines
the maximum number of the unit that can be used in a game (pre any tech upgrades which
may affect this value) and the allowedage defines the earliest age in which the unit can be
built (e.g. age 1-4). Typically heroes or special characters will be limited to one, more exotic
characters will be prohibited until later ages, and the better the unit the longer it will take to
create, however there are no hard and fast rules.

<cost resourcetype="Food">100.0000</cost>
<cost resourcetype="Gold">50.0000</cost>

These fields define how much a unit will cost (pre any tech upgrades which may change
these values). As well as Food and Gold, the cost resourcetype can also be "Wood" or
"Favor". The main challenge in defining the cost of the unit is to ensure that you retain a
balance in resource costs — e.qg. if everything costs Food - Wood and Gold become useless,
too much emphasis on Favor may limit your ability to quickly build a defending army and so
forth.

<bounty resourcetype="Favor">2.1600</bounty>

The Norse culture earns favor by destroying enemies, so each unit has a favor value that is
received by the opponent on its death. Generally the harder the unit is to kill, the higher its
bounty should be. While the standard game uses this feature only for favor, it can be used
to define other resource types for example you could create a civilization that survives on
plunder and various buildings and characters could result in bounties of food, wood and gold.

<bountyfactor resourcetype="Favor">1.0000</bountyfactor>

This field establishes a factor that is applied to a units favor gathering ability (praying or
combat). It is usually set to one, however it could be varied so that weaker units gain a
favor premium.

<rollovertextid>16601</rollovertextid>
<rolloverbonusdamageid>17277</rolloverbonusdamageid>
<rolloveruseagainstid>17352</rolloveruseagainstid>
<rollovercounterwithid>17571</rollovercounterwithid>
<rolloverupgradeatid>17589</rolloverupgradeatid>

These fields define a number of other texts messages that are used with the protounit and
as with the displaynameid are simply references to an index number in the
xpacklaguage.dll or language.dll files. The texts have the following purposes. The
rollovertextid is an expanded explanation of the unit and is displayed (usually in the
bottom left-hand side of the screen when the unit is selected) it is a brief explanation of
what the unit is for. The rolloverdamagebonusid is used in the main information screen
for the unit (when you press the information icon) and should be based on the
bonusdamage settings you use in the units action parameters (see below). The
rolloveruseagainstid and rollovercounterwithid similarly tell game players what units
the protounit is best used to attack and what to use to defend against it. The
rolloverupgradeid tells game players which building or buildings they need to upgrade the
unit (e.g. where they can initiate the technology upgrades associated with this protounit).
The text ids need to be unique. As advised above, just start your own text ids at 60000 and
keep adding one for each new text. Including the actual text is discussed in Chapter 7.

Page 17

<buttonpos column="0" row="0"></buttonpos>

This field is used in conjunction with the unittransform and commandpanel functions and
need not be worried about at this time. It just tells the game where this button will be and
would only be changed if you wanted to use this position for something else.

<armor damagetype="Hack" percentflag="1">0.25</armor>
<armor damagetype="Pierce" percentflag="1">0.35</armor>
<armor damagetype="Crush" percentflag="1">0.99</armor>

These fields define the initial level of armor protection for the unit (e.g. prior to any armor
upgrades). The amounts are the percent by which attacks are reduced. Hack are usually
hand attacks, pierce - ranged attacks and crush - siege attacks, though some attacks use

combinations of these. The higher the amount used the more resistant a protounit is to a
given form of attack.

<allowedculture>Greek</allowedculture>

This field tells the game what protounits are available to a given culture (Greek, Egyptian,
Norse, and Atlantean) and is mainly used to limit the build options available in some multi-
purpose buildings (e.g. town centers). Use this field if you want to limit the availability of
the unit.

<unittype>LogicalTypeVolcanoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAutoAttack</unittype>
<unittype>LogicalTypeCanBeHealed</unittype>
<unittype>LogicalTypeAffectedByRestoration</unittype>
<unittype>LogicalTypeAffectedByVortex</unittype>
<unittype>LogicalTypeMilitaryUnitsAndBuildings</unittype>
<unittype>LogicalTypeParticipatesInBattlecries</unittype>
<unittype>LogicalTypeTornadoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAttack</unittype>
<unittype>LogicalTypeValidFlamingWeaponsTarget</unittype>
<unittype>LogicalTypeConvertsHerds</unittype>
<unittype>LogicalTypeValidBoltTarget</unittype>
<unittype>LogicalTypeFimbulWinterTCEvalType</unittype>
<unittype>LogicalTypeEarthquakeAttack</unittype>
<unittype>LogicalTypeFavoriteUnit</unittype>
<unittype>LogicalTypeValidSpyTarget</unittype>
<unittype>LogicalTypeGreekHeroes</unittype>
<unittype>LogicalTypeValidShiftingSandsTarget</unittype>
<unittype>LogicalTypePredatorsAttack</unittype>
<unittype>LogicalTypeNeededForVictory</unittype>
<unittype>LogicalTypeHandUnitsAutoAttack</unittype>
<unittype>LogicalTypeValidFrostTarget</unittype>
<unittype>LogicalTypeLandMilitary </unittype>
<unittype>LogicalTypeImplodeAttack</unittype>
<unittype>LogicalTypeValidSPCUnitsDeadCondition </unittype>
<unittype>LogicalTypeAffectedByHealingSpring</unittype>
<unittype>LogicalTypeUnitsNotBuildings</unittype>
<unittype>LogicalTypeRangedUnitsAutoAttack</unittype>
<unittype>LogicalTypeVillagersAttack</unittype>
<unittype>LogicalTypeHandUnitsAttack</unittype>
<unittype>LogicalTypeRangedUnitsAttack</unittype>
<unittype>LogicalTypeTartarianGateValidOverlapPlacement</unittype>
<unittype>LogicalTypeGarrisonOnBoats</unittype>
<unittype>LogicalTypeValidForestFireTarget</unittype>
<unittype>LogicalTypeValidMeteorTarget</unittype>
<unittype>LogicalTypeMinimapFilterMilitary </unittype>
<unittype>LogicalTypeldleHero</unittype>
<unittype>LogicalTypeldleMilitary</unittype>

Page 18

The above list of unittype definitions tells the game how it is to treat a unit in various
circumstances. In the first instance it is easier to keep these the same as the base unit you
have used for your modified protounit but when you get more experience you can add or
delete unittype definitions where you want a unit to be immune from certain attacks or god
powers.

<unittype>Unit</unittype>
<unittype>UnitClass</unittype>
<unittype>Military </unittype>
<unittype>Hero</unittype>

The next set of unittype definitions defines a number of unittype classes, which are used in
the game to cluster units into like groups. These definitions are useful when defining new
technologies as the effects of these technologies can be made either to a specific protounit
or to a class of units (e.g. armor and weapons upgrades to all military units). Other
common unit types that enable such global upgrades are AbstractArcher, AbstractInfantry
and AbstractCavalry. The first of the definitions is also used in the Editor when placing
protounits, whereby they can be separated into Units, Buildings and Embellishments. You
can use as many classes as you like, just make sure that when you use them you are not
inadvertently granting a unit multiple upgrades because they are in multiple classes.

<flag>ObscuredByUnits</flag>
<flag>CollidesWithProjectiles</flag>
<flag>DontRotateObstruction</flag>
<flag>ShowGarrisonButton</flag>
<flag>CorpseDecays</flag>
<flag>ApplyHandicapTraining</flag>
<flag>HideGarrisonFlag</flag>
<flag>Tracked</flag>

The flags listed above switch on or off some of the options associated with protounits and
should kept as standard from the base protounit. If making a hero that you do not wish to
die you should include line:

<flag>HeroDeath</flag>

This will allow the hero unit to resurrected when allied troops move into the area.

<contain external="1">Relic</contain>
This allows a unit to carry a relic.

The last section of the unit definition is the actions that unit can perform. The number of
actions can vary for a unit and can include various attack actions, economic actions. In the
example of Jason only three actions are defined:

<action name="HandAttack">
<param name="MaximumRange" value1="0.1"></param>
<param name="Damage" type="Hack" valuel="9"></param>
<param name="DamageBonus" type="MythUnit" valuel="7"></param>
<param name="Rate" type="All" value1="5.0"></param>
<param name="DamageBonus" type="SetAnimal" valuel="3"></param>
</action>

This first action is a basic hand attack definition and has five parameters:
= The maximum range parameter, tells the game how far away an enemy must be for
the attack to take effect. For a hand attack this is typically 0.1 though you can

Page 19

increase here or via a technology to give the unit an advantage of reach over its
opponents.

= The Damage and damage type caused. You could define additional damage for
Pierce and Crush if required (for example a swordsman may inflict Hack and Pierce, a
Maceman could inflict Hack and Crush Damage). The total of these damages would
be reduced by the opponent's armor settings and applied against its hitpoints.

» The DamageBonus allows you set an additional damage amount for either a
specific protounit or in this case a unit class. Jason has two Damagebonuses against
unit classes MythUnit and SetAnimal.

= The Rate parameter allows you define the frequency of attack, a higher number
being more "swings per second".

<action name="PickUp">
<param name="TypedRange" type="Relic" value1="1"></param>
</action>
<action name="DropOff">
<param name="TypedRange" type="AbstractTemple" valuel="1"></param>
<param name="Rate" type="AbstractTemple" valuel1="1"></param>
</action>

The above actions allow the protounit to pick up and drop off relics and should be used as is
for any protounit that you require to collect relics.

</unit>

This signifies the end of the definition for this protounit. If it was the last unit in the
PROTOX file it would be followed by </proto> signifying the end of the definition file.

3.3 Defining Different Character Actions

Aside from the definition of actions, most protounits have the same features in terms of a
name, cost and basic attributes. Making your characters interesting is all about them doing
interesting things so it is worth looking at the other types of actions units can perform:

Regenerate

We hate it when our heroes die, and so the best way to prolong them is to allow them to
regenerate or recover. The following standard action enables regeneration.

<action name="Regenerate">
<param name="Rate" type="All" value1="1.0"></param>
<param name="Persistent"></param>

</action>

To increase regeneration ability just increase the amount in valuel. The value is roughly
equal to one hitpoint regeneration per second.

Heal

You may want units such as priests or buildings such as temples to be able to heal other
units. The action required to do this is:

<action name="Heal">
<param name="MaximumRange" value1="3.0"></param>

Page 20

<param name="Rate" type="LogicalTypeCanBeHealed" valuel="1.5"></param>
</action>

The action has two parameters the MaximumRange (e.g. how far away the unit needs to be
to be affected) and the Rate at which healing takes place (roughly hit points per second)

Convert

A convert or chaos attack is where a unit can convert those around them to Gaia, whereby
they attack all players around them. The convert attack uses the following format:

<action name="ConvertAttack">
<param name="MaximumRange" valuel="7"></param>
<param name="MuteDamage"></param>
<param name="NoWorkOnFrozenUnits"></param>
<param name="NoWorkOnStoneUnits"></param>
<param name="Rate" type="LogicalTypeAffectedByChaos" value1="1.0"></param>
<param name="NoWorkOnChaosedUnits"></param>
<param name="AttackAction"></param>
<param name="ChargeAction"></param>
<param name="ConvertToGaia"></param>

</action>

The main parameters here are the MaximumRange and Rate of attack (in this case one
at a time). The parameter "ChargeAction" means that this attack can only be used once
and then it must be recharged. To define the recharge time you would insert the following
(just above the maxvelocity definition earlier on in the unit's proto definition):

<rechargetime>10.0000</rechargetime>

Where the amount is the number of seconds required to recharge the attack.
Ranged Attack

The ranged attack is the standard attack type for units such as archers, ranged siege
weapons or buildingsthatshoot. It take the following basic format:

<action name="RangedAttack">
<param name="MinimumRange" value1="6.0"></param>
<param name="MaximumRange" valuel="28"></param>
<param name="Damage" type="Pierce" value1="19"></param>
<param name="Accuracy" valuel1="1.0"></param>
<param name="AttackAction"></param>
<param name="AccuracyReductionFactor" value1="0.1"></param>
<param name="AimBonus" valuel="25"></param>
<param name="SpreadFactor" value1="0.10"></param>
<param name="MaxSpread" valuel="3.0"></param>
<param name="TrackRating" value1="5.0"></param>
<param name="UnintentionalDamageMultiplier" value1="0.3"></param>
<param name="HeightBonusMultiplier" valuel="1.25"></param>
<param name="DamageBonus" type="Warg" valuel="7"></param>
<param name="DamageBonus" type="Warg Rider" valuel1="7"></param>
<param name="DamageBonus" type="0rc Pikeman" valuel="7"></param>
<param name="Rate" type="All" value1="1.5"></param>

</action>

In this example the MinumumRange is used as the character in question (Legolas) uses a
sword for close combat. If the unit only had a ranged attack you would not use this

Page 21

parameter. The other parameters are similar to those used in a basic hand attack and
define the level and type of damage caused and any damage bonuses. Ranged Attacks also
allow control over the accuracy of firing include the SpreadFactor and MaxSpread (how
far the projectiles will spray from their intended target) based on how far away it is; how
well it will target moving objects via its TrackRating (in this case the
AccuracyReductionFactor is applied when speed exceeds 5.0; and the extent to which
accuracy and damage will increase where the ranged unit is higher in altitude than the
target (its HeightBonusMultiplier). This basic format is used across all ranged attacks.
The variation that creates different projectiles that are displayed during game-play are
defined earlier in the protounit definition, typically just after the turnrate, using one the
following definitions:

<projectileprotounit>Arrow Flaming</projectileprotounit>
<projectileprotounit>Ballista Shot</projectileprotounit>
<projectileprotounit>Lampades Bolt</projectileprotounit>

Look at the definition of the ranged unit most like the one you are creating if you are not
sure.

Autogather

It is also handy sometimes to define units or buildings that autogather resources — A Plenty
Vault is one example of this type of unit, but it is also useful for fattening up livestock and
so forth. The format is straightforward — just define the type and rate of resource gathering.

<action name="AutoGather">

<param name="Persistent"></param>

<param name="Rate" type="Favor" value1="0.50"></param>
</action>

A number of other standard attack variations are available such as LightingAttack,
JumpAttack, ChargedRangeAttack and ChargedHandAttack. If you do a search through the
PROTOX files you can see you they work.

The MOST IMPORTANT thing to remember when defining actions, is that each action will
require a separate animation definition in the units anim file (see Chapter 5) and these
animations will in turn call different Models. While it would be nice to create a unit with all
of these actions, if suitable models do not exist (unless you can create additional models)
the actions will not look very realistic in game play. More of this later.

The other point to remember when defining the initial proto unit is that you are defining
how the character will behave with the Age 1 technology set. As we will discuss in Chapter
10, the units speed, los, armor strength, recharge time, training time, attack strength,
attack speed, and so forth can be upgraded during the game through technologies.

In general, it is more interesting to start with a weaker unit and force players to achieve

certain technologies, than to start with an Age 1 monster that can simply wander around the
game destroying enemies at random.

Page 22

3.4 Creating a New Character

It will take a bit of practice for all of this to sink in, but to start with we will just keep it
simple. We are going to create a new proto unit definition — Aragorn — based on the Jason
Character.

1) Open the PROTO(X).XML file scroll or search your way down to Greek Hero Jason
(PROTOX unit 542, PROTO unit 478). Copy the full proto definition for Jason —i.e.
everything between

<unit id="542" name="Hero Greek Jason">

</unit>

2) Go to the end of the PROTO(X).XML file and before the line containing </proto> paste
the copied protounit definition.

3) Now make the following changes to the pasted definition:
a) Change the first line to <unit id="801" name="Aragorn"> "623" if using AoM.

b) Change the second line to <dbid>2848</dbid> 2653 for vanilla AoM.

C) Change the <icon> field from hero g jason to aragorn icon 32.

d) Change the <portraiticon> field from hero g jason icon 64 to aragorn icon
64.

e) Change the six (6) references to in-game texts to the numbers we will be

using in Chapter 7.

<displaynameid>60000</displaynameid>

<rollovertextid>60001</rollovertextid>
<rolloverbonusdamageid>60002</rolloverbonusdamageid>
<rolloveruseagainstid>60003</rolloveruseagainstid >
<rollovercounterwithid>60004 </rollovercounterwithid >
<rolloverupgradeatid>60005</rolloverupgradeatid >

f) Change the <allowedculture> field from Greek to Norse.

<allowedculture>Norse </allowedculture>

4) After the last action:

<action name="DropOff">
<param name="TypedRange" type="AbstractTemple" valuel="1"></param>
<param name="Rate" type="AbstractTemple" valuel="1"></param>
</action>

but before the end of the unit definition:

Page 23

5)

6)

7)

8)

</unit>
insert a new action to allow our hero to regenerate.

<action name="Regenerate">
<param name="Rate" type="All" value1="1.0"></param>
<param name="Persistent"></param>

</action>

Save the file (takes a little while causes it is quite large).

Launch Ykkrosh's AOM Data File Converter by double clicking the relevant icon
in your AoM Mods folder, and click the Direct file conversion button.

Direct file conversion | Bulk conwversion | Acvanced options | |

Set input data file | |

Folder to extract datairta | | |

Read data file |

Set autput data file I | |

Folder 1o read data from I I |

inrite data file I !

e

You will then by asked to Select data file for input. Go to your Source
Files\data folder and locate the PROTOX.XML file (AoMTT) or PROTO.XML file
(AoM) and click Open.

A pop-up window will inform you that it is Converting to XMB — select an output
file in the following window. Press the OK button, and then press the Save
button on the following window. This will save the file to the default file name —
PROTO(X).XMB. The conversion will start and a pop up window will advise
Conversion Finished when complete. Press OK and close (XI) the AOM Data
File Converter.

You now have a new file PROTO(X).XMB ready for use by the game. If for some reason
the conversion fails this will almost certainly due to a syntax error. So check.

a)
b)

c)

That the unit definition preceding the new Aragorn units ends with </unit>
That the Aragorn unit definition ends with </unit>

That immediately after the Aragorn unit definition is the end of protounit
definitions </proto> and that there is nothing after it.

Page 24

d) That the other lines changed have the correct syntax in terms of the definition
start and finish.

If the conversion was successful copy the new PROTO(X).XMB file to the \data folder in your
standard AoM folder

While we have defined a new character it is not of much use to us yet, first we must
animate it.

Page 25

4. The Role of Models

Before moving onto animations, we need to discuss Models. I have yet to master the art of
modeling, however in order to understand how animations and textures work it is important
to understand Models.

Everything you see in game play is based on a set of pre-built models provided with the
game, however it is not as simple as a one-one ratio of characters and models. Each
protounit will have a number of models that are used to animate different actions. For
example there will be different models for when the unit is idle, walking, attacking, bored,
dying, dead or at birth. Economic units such as villagers will also have different models that
animate them when mining, chopping wood, sowing seeds, gathering food and so forth.

To add to this complexity, some animations require multiple models. For example, in a
number of infantry units the head is a separate model and there will by multiple versions of
the head, usually associated with different technologies. The head of a champion infantry
unit may be a head wearing a helmet and so forth.

Other models may also be attached to a unit, such as weapons, or items the unit may be
carrying — a basket for example.

So before we move on to animating and applying new textures to our new character, we
need to discuss the implications of models.

The first issue is that when deciding which character (and in turn which set of models) you
want to use as the basis of a new character you need to see what action models are
available for that character. In the case of Aragorn, who we are going to model on Greek
God Jason, we have nine models to work with:

hero g jason_attacka
hero g jason_boreda
hero g jason_carry

hero g jason_carrybored
hero g jason_carryidle
hero g jason_deatha
hero g jason_flaila

hero g jason_idlea

hero g jason_walka

While in some cases, models of different characters are similar enough (when the same
texture is applied) to extend the options available, generally in basic animation we are
limited to the actions available with that model.

In the case of Jason (and hence Aragorn), there is little point in defining a ranged attack for
example — you can use the idle model and have it magically fire arrows, or extract food by
telepathy, but as stated in the last chapter the effect is not very realistic. Similarly you
cannot have a jump attack as there is no model that jumps.

So before selecting a base unit it is always wise to do a search on the Models folder to find

which models are available for the character. This will save later disappointments when you
realize that a certain character simply cannot perform the actions you require.

Page 26

Unless you know how to create new models, the available AoM models will be your starting
point for modding. If you want to build a new unit that uses a jump attack as its main
attack for example, you would do a search of your Source Files\models folder for "jump".
The naming convention for models is fairly standardized — unitname_action — so searching
for a specific action — jump, pray, etc., will give you a list of all protounits with that ability
and once you have found a likely candidate you can then search for all the models
associated with that protounit to see what else they can do. In this way you can target in
on the preferred base unit for your intended mod.

In some instances, characters will look similar enough (particularly when using the same
textures), so that you can mix and match them. For example, in a Legolas character I
developed, I used archer x hero as the basic model, but used the hero x kastor
adult_attacka model to let Legolas have a hand attack animation for close combat. The
units are of a similar size and build and the loss of the archer's quiver when in hand attack
mode is not too obvious.

While consistency of appearance is important for some units, another approach is to accept
that the models may look different but use the available models to create transformational
characters — for example you could base a character on villager g greek female, but use
TitanXGaia_attacka for the hand attack. When attacked the harmless female would
transform into a 60 foot monster, only to shrink back to normal size when her attacker was
vanquished.

As you get more experienced with modding these possibilities will become more apparent,

however in the first instance we will just stick the basic models available for a single
protounit.

Page 27

5. Animations

A characters anim file is a definition of the models and visual effects that the game will use
for the various actions a character will perform during game play. The format of the file is
broken into two sections — a definitions section, where various attachments and visual
effects are defined, and an anim section, where the each of the actions the character will
perform are defined.

Every unit defined in the PROTO(X) file will have a corresponding anim file, called
protounitname_anim.txt where protounitname is identical to the name defined in the
PROTO(X) file.

The following is a copy of the hero greek jason_anim file that we will use as the basis of
our Aragorn anim.

define heroglow
{
set hotspot
{

version

{
Visualparticle SFX A Hero Glow Small

anim Idle

SetSelector
{
ContainLogic
SetSelector
{
set hotspot
{ .
version
{
Visual Hero G Jason_idleA
Connect FRONTABDOMEN heroglow hotspot
b
b
b
SetSelector
{
set hotspot
{ .
version
{
Visual Hero G Jason_Carryldle
Connect FRONTABDOMEN heroglow hotspot
b
b

Page 28

b
//===
anim Bored
SetSelector
{
ContainLogic
SetSelector
{
set hotspot
{
version
Visual Hero G Jason_boredA
Connect FRONTABDOMEN heroglow hotspot
b
b
b
SetSelector
{
set hotspot
{
version
Visual Hero G Jason_CarryBored
Connect FRONTABDOMEN heroglow hotspot
b
b
b
b
b
//===
anim attack
SetSelector
{
set hotspot
{
version
{

Visual Hero G Jason_attackA
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag Attack 0.32 true
tag GenericSound 0.40 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot

anim death

SetSelector

{
set hotspot

{

version

{

Page 29

Visual Hero G Jason_deathA

anim Walk

{

SetSelector
{
ContainLogic
SetSelector
{
set hotspot
{

version

{
Visual Hero G Jason_walkA
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag FootstepLeft 0.30 true
tag FootstepRight 0.80 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot
b

b
b
SetSelector
{
set hotspot
{ .
version
{
Visual Hero G Jason_Carry
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag FootstepLeft 0.30 true
tag FootstepRight 0.80 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot
b

anim flail

SetSelector
{
set hotspot
{ .
version
{
Visual Hero G Jason_flailA
Connect FRONTABDOMEN heroglow hotspot
b
b
b
b

Page 30

5.1 Anim File Syntax

So what does all this mean?

The syntax of anims uses a humber of functions — SetSelector, set hotspot, version and so
forth to define attributes for a particular situation. In more advanced anims these functions
allow you to control various aspect of the character look based on a range of external
factors. The role of these functions is as follows:

SetSelector tells the game that the definition that follows is dependent on the result of
some form of logical test. In the case of the first SetSelector in the anim section the test is
— is the unit idle?, is the unit bored? is the unit attacking? and so forth. However in many
situations we will want a number of nested conditions, so in the idle anim for example, we
have a second SetSelector after the function ContainLogic. So in this instance, we have two
tests — Is the idle? If so, is the unit carrying anything? The outcome of these two tests
determines which animation to use. In the definition area you will note that there is no
SetSelector as in this case there is no test required, the game will always define this visual
effect.

Set hotspot tells the game that you are defining an animation, which will be a collection of
visual properties. The hotspot is the sequence of movements that you will see in game
every time the particular action occurs.

Version can be best thought of as a frame in a sequence. While most of the sequences in
AoM are achieved with a single model, some more complex sequences use several. The
hippikon attack sequence for example uses three. In this case the hotspot (or sequence) is
based on three versions (or frames). When the action is triggered the game will cycle
through these three versions for as long as the action is in progress.

Within each Version we have a number of functions that allow us to define and if required
modify the models we use.

Visual denotes that the following filename is the model we require for this particular version
(or frame). For example Visual hero greek jason_idleA means use the file hero greek jason
idleA.BRG from the AoM Models folder. The functions Visualparticle and VisualGranny
(the latter not used in this anim) do the same thing but for .PRT files and .GRN files. Just
look up the file in the \models directory to find the files extension type for the model you
want if you are not sure which to use.

The next function we see is Connect. Connect allows us to attach other models (such as
weapons) or visual effect (such as hero glows) to our base model. As you look through the
various anim files you will find a large number of potential Attachpoints. In the Jason anim
we use it to connect the heroglow visual particle to Jason's FrontAbdomen, but at other
times we may use if to attach a sword to a models RightHand or LeftHand, a shield to a
models LeftForearm or RightForearm or a predefined head to a models TopOfHead.

These attachpoints are defined when creating a model, and will vary from model to model
(although the names are standard where they exist).

Page 31

Finally in the Jason example, we see the use of the function tag. Tags are used in models
that involve complex movements and are used as parameters to determine things like how
big steps should be when walking or the timing of attack sequences. As the comments
preceding these functions suggest these values are generated by the AoM animation tools
and should not be changed.

One other function that we do not find in the Jason anim, but that will be used frequently in
our modding activities is the ReplaceTexture function. This is the function we use to
replace a models default texture with our modified texture and how we change the
appearance of the models.

5.2 Detail of an Anim File

We will go into this in more detail later in this Chapter, but for now we will have a more
detailed look at the Jason anim and discuss what each part of the anim is doing.

In anims (and a number of other AoM files), the "//" denotes a comment line and normally
you would put in the name of the file for reference (in this case they obviously edited from
an ajax anim and forgot to change it).

define heroglow

{
set hotspot

{

version

{
Visualparticle SFX A Hero Glow Small
b
by
b

The only entry in the definitions section for this anim is defining a visual particle called a
heroglow. You can call define these by any name you like — usually you just call them what
they are: head, sword, basket, etc. These definitions are then available to connect to the
main model in the individual anim definitions. In this definition, there is no logic involved so
you will notice that there is no SetSelector declaration. This will not always be the case.

You will also notice that in some anims, they will use the Import function. This allows you
to import other anim files into your anim and is often used for items such as weapons,
which are common across a number of units. These imports save you redefining these
objects every time you want to use them.

anim Idle

SetSelector

This tells the game to use this anim definition when the unit is idle.

{

Page 32

ContainLogic

Jason has two models for use when he is idle. One for when he is carrying something (a
relic) and one when he is not. ContainLogic is the function that the game uses to test if the
unit is carrying something. The function will deliver the result No or Yes.

SetSelector
This next SetSelector is nested inside the first one and deals with a No response from the
ContainLogic function.

{
set hotspot

We then define the model sequence for this occurrence.

{

version
And the frames used in the sequence (in this case there is only one frame).

{

Visual Hero G Jason_idleA

We define the model we wish to use (in this case a reference to \models\hero g
jason_idlea.brg.

Connect FRONTABDOMEN heroglow hotspot
And connect an embellishment in the form the heroglow visual particle define earlier.

by
by
¥

SetSelector

We then use SetSelector again to manage the Yes response from the ContainLogic function
(note that it is nested at the same level as the No response).

{
set hotspot

{

version

{
Visual Hero G Jason_Carryldle
Connect FRONTABDOMEN heroglow hotspot

by
b

We then repeat the anim definition for this occurrence, using the appropriate model hero g
jason_CarryIdle.brg.
b

anim Bored

{

The anim Bored definition follows the same logic as the idle anim, but in this instance it will
point to two different models hero g jason_boredA.brg or hero g jason_CarryBored.brg.

Page 33

SetSelector

{
ContainLogic
SetSelector

{
set hotspot

{

version

{

Visual Hero G Jason_boredA
Connect FRONTABDOMEN heroglow hotspot

ks
}
}
SetSelector

{
set hotspot

{

version

{

Visual Hero G Jason_CarryBored
Connect FRONTABDOMEN heroglow hotspot

}

anim attack

{

The anim attack definition only has one set of possible models. You will notice that in game
play, units put down relics when fighting — the reason being that there are no carryattack
models! The attack model requires the parameters passed by the two tag statements.

SetSelector

{
set hotspot

{

version

{

Visual Hero G Jason_attackA
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag Attack 0.32 true
tag GenericSound 0.40 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot

anim death

{

The anim death definition is as simple as they get and simply tells the game to use the
model file hero g jason_deathA.brg.

SetSelector

Page 34

set hotspot
{

version

Visual Hero G Jason_deathA

anim Walk

{

The anim definition for walk combines the ContainLogic used in the idle and bored anim
definitions along with requiring tag statements to tell the game how the sequence the
models walking action.

SetSelector
{
ContainLogic
SetSelector
{
set hotspot
{ .
version
{
Visual Hero G Jason_walkA
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag FootstepLeft 0.30 true
tag FootstepRight 0.80 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot
b
b
b

SetSelector

{
set hotspot

{

version
{
Visual Hero G Jason_Carry
//-- auto generated by the bang animation tool
//-- do not hand edit these values
tag FootstepLeft 0.30 true
tag FootstepRight 0.80 true
//-- end auto generated section
Connect FRONTABDOMEN heroglow hotspot

}
b
b
}

}
//{=======================ss==ss=sss=sssssssssssssssssssssssssssssssss
anim flail
{

The flail anim definition is just a straightforward definition of which model to use hero g
jason_flailA.brg along with a Connect statement to attach the heroglow visual particle.

Page 35

SetSelector

{
set hotspot

{

version

{

Visual Hero G Jason_flailA
Connect FRONTABDOMEN heroglow hotspot

¥
by
¥
¥

While there are certainly more complex version of anims, they all conform to this basic
structure.

In the case of Jason, we have an anim that creates a single look unit. That is, while
different "action" versions of the model will be used the basic features of that model —
textures and weapons will be constant. There are a number of ways of adding variety to
the animations, which we discuss later in this Chapter. But for starters let us look at what is
involved in using the Jason anim for our new Aragorn character.

5.3 Modifying an Anim File

For our first anim edit all we are going to do is make the changes necessary to change the
appearance of Jason to that of Aragorn. We will do this by telling the anim to use a
different texture when displaying the model by way of the ReplaceTexture function.

The ReplaceTexture function has two parameters old_texture and new_texture with the
following syntax:

ReplaceTexture old_texture/new_texture.

In Chapter 6 we will create some new texture files for Aragorn, but to enable us to make
our changes to the anim we fist need to find out the name of the default texture used by
the Jason anim. To do this:

Click on the Source Files\textures folder and do a search of the folder for all files containing
"jason". You will get a list of seven (7) .DDT files:

hero g jason corpse bodya
hero g jason corpse skeletona
hero g jason head standard
hero g jason shield

hero g jason standard

hero g jason icon 64

hero g jason

If you remember back to the proto definition you will recall that the latter two files are the

names of the icon files used in the proto definition. The remaining files are the texture files
for this character. The two corpse textures are similar for all models but the other three

Page 36

(head standard, shield and standard) are the textures we will be replacing with new Aragorn
textures.

We will keep to the same naming conventions when we get to creating the new textures in
Chapter 6, so the new commands we will be requiring when we create our new
Aragorn_anim file will be three ReplaceTexture entries:

ReplaceTexture hero g jason standard/aragorn standard
ReplaceTexture hero g jason head standard/aragorn head standard
ReplaceTexture hero g jason shield/aragorn shield

So let us create the new anim:

1)

2)

3)
4)

5)

6)

In your Source Files\anim folder locate the hero greek jason_anim.txt file and
Copy it, then Paste it into your Mod Files\anim folder.

Rename the version of the hero greek jason_anim.txt file you just placed in
your Mod Files\anim folder to aragorn_anim.txt.

Open the aragorn_anim.txt file using Notepad.

Change the second line of the anim from ajax_anim.txt to aragorn_anim.txt.

Now scroll through the anim file and after every occurrence of the command
visual hero g jason_action

insert the three ReplaceTexture commands listed above.

For example, for the idle anim with ContainLogic of No you will end up with the
following

version

{
Visual Hero G Jason_idleA
ReplaceTexture hero g jason standard/aragorn standard
ReplaceTexture hero g jason head standard/aragorn head standard
ReplaceTexture hero g jason shield/aragorn shield
Connect FRONTABDOMEN heroglow hotspot

b

You need to make sure you do this for every anim definition or you will find your
character reverting back to the original Jason textures for some actions. There are a
total of nine (9) insertions you will need to do.

Once you have made all the changes, save the Aragorn_anim.txt file and copy it
to the \anim folder in the main Age of Mythology folder.

We now have an anim file for our new character.

Page 37

5.4 More Advanced Anim Features

The Jason/Aragorn anim is very simple and often you will want to add variations into your
anim files. A number of functions are available for use in anims to assist with this.

The first of these is VariationLogic. VariationLogic tells the game to cycle through a list of
defined hot spots so that the look of the character varies. An example of this could be
where you want some variety in your villager — let us say we want red heads, blondes and
brunettes. We could achieve this variation by creating three new texture files called villager
g female head (red/blonde/brown) and creating the following anim definition (I will use the
anim idle for this example).

anim idle

SetSelector

{
VariationLogic
set hotspot

{

version

visual villager g female_idleA
ReplaceTexture villager g female head/villager g female head red

}

¥
set hotspot

{

version

visual villager g female_idleA
ReplaceTexture villager g female head/villager g female head blonde

}

b
set hotspot

{

version

visual villager g female_idleA
ReplaceTexture villager g female head/villager g female head brown

by
by
by
¥

You would need to repeat these definitions for all of the various anim definitions.
The resulting anim when called in the game would cycle through the three head formats.

Another use of the VariationLogic Command is for things like weapons. For example you
way wish to base a unit on the greek hippikon but to have a mix of spear and sword
carrying cavalry. You would do this by defining a weapon at the start of the anim and then
connecting this weapon. For example:

define weapon

SetSelector

{

Page 38

VariationLogic
set hotspot
{

version

{

visual attachments a spear copper
b
b
set hotspot
{

version

{

visual attachments n sword standard

by
by
¥

You would then to a global edit to replace the existing connect RightHand greekSword hotspot With
connect RightHand weapon hotspot

When these units are created during a game, half will have an altantean spear and half a
norse sword as their weapon.

The TechLogic command allows for similar variations to be included but links the logic for
inclusion of these variations to the availability of certain technologies.

The various weapons_anim files employ this technique, for example the Greek Sword_anim:

define GreekSword

{

SetSelector

{

TechLogic none/Copper Weapons/Bronze Weapons/Iron Weapons
set hotspot
{

version

{
Visual Attachments G Sword Standard

}

b
set hotspot

{

version

Visual Attachments G Sword Copper

}

¥
set hotspot

{

version

{

Visual Attachments G Sword Bronze

¥
¥
set hotspot
{

version

Visual Attachments G Sword Iron

}

Page 39

by
¥
b

Similar approaches are taken with Shield defines and in the anims for most standard infantry
units usual use TechLogic with the none/medium/heavy/champion technologies for the
relevant military type to change the appearance of the units texture and head during game

play.

Another specific variation technique is the use of the ConstructionLogic function. This is
typically used with buildings to link anims to the different models to be used to represent
the stages of building construction and destruction as required. The command uses the
syntax:

ConstructionLogic %1 %2 %3 ... where %1,%?2, %3 etc and integers between 0 and 99
for example:

ConstructionLogic 0 25 50 75
would use five hotspots for the variations stages of construction or destruction.

If you look at the anim for any building you will how this is employed in the anim idle and
anim death definitions.

With these functions there is no end to the level of variation you can create in your
animations and the increased visual interest you can build into your game play. For
example, the characters standing behind Aragorn (ROTK) and Faramir in the picture below
are 8 of the 15 possible variations of a Men of Gondor mod I made using VariationLogic.

Yaragorn [Faramir

MEN OF GONDOR

Similarly by linking a unit's armor, helmet, shield and sword separately to the relevant
technologies you can have 256 different versions of a unit during the course of a game.

It is just a matter of creating the textures.

Page 40

6. Textures

The quality of the textures you use in your mods will make or break them, but you do not
need to be an artist to make reasonable textures, it just takes a bit of patience. If you can
create a new texture from scratch all the better, but there are plenty of photos available on
the Internet or in books that you can use to cut and paste a new texture for you characters,
as is show by the example below:

Original Artwork Finished Unit

The trick is understanding how the texture files work and how they map to the models used
in the game. Once you get the hang of this you can build up a wide range of characters
using pictures of various examples of chain mail, plate mail, various armors, shields and
helmets from history or from the movies.

The starting point is the texture files for the unit you plan to base your new character on, as
these will have the layouts required to map correctly over the models your new character
will use.

Most characters use a number of different texture files that are mapped to the various
models used in building the character. Typically separate texture files are used for the body
and the head (to give the head a sharper definition), with additional textures used for
attachments such as shields, weapons and capes. Cavalry units will also have a separate
texture file for the horse. Units also have icon textures that contain the picture of the
character to be displayed in game play. These usually come in 32x32 bit and 64x64 bit
formats.

Page 41

Characters that change in appearance through the course of the game (i.e. as technologies
are acquired) may use multiple versions of each texture type. To check on the relevant
textures for the character you wish to base your mod on, do a search for files that include
the characters name in your AoM Mods\Source Files\Textures folder. While ES has not
always stuck to a standard naming convention usually the following names are used:

Body
character standard map
character copper map
character bronze map
characteriron map

Head
character head standard
character head copper
character head bronze
character head iron

Cape
character cape standard
character cape copper
character cape bronze
character cape iron

Horse
character horse standard
character horse copper
character horse bronze
character horse iron

Shield
attachment c shield standard
attachment c shield copper
attachment cshield bronze
attachment cshield iron

where ¢ = g (greek), n (norse), e (egyptian), a (atlantean)

Weapon
attachment ¢ weagpon standard
attachment ¢ weapon copper
attachment ¢ weagpon bronze
attachment ¢ weapon iron

where ¢ = g (greek), n (norse), e (egyptian), a (atlantean); and
weapon = sword, spear, axe, lance, etc.

Icons

charactericon 32
charactericon 64

Page 42

Each character unit also has textures for its corpse body and corpse skeleton. These are
fairly standard and I find they do not warrant replacement.

6.1

Converting Textures to Bitmaps

To create the textures for our Aragorn Character:

1)

2)

3)

Do a search on "Jason" in the AoM Mods\Source Files\textures folder. You will get a
list of seven (7) .DDT files:

hero g jason corpse bodya
hero g jason corpse skeletona
hero g jason head standard
hero g jason shield

hero g jason standard

hero g jason icon 64

hero g jason

The first two "corpse" files we will not worry about but we want to Copy the next
three (3) files and Paste then to our AoM Mods\Mod Files\textures folder and
the last two files we want to Copy and Paste to our AoM Mods\Mod
Files\textures\icons folder.

The first three files are the textures for Jason's head, shield and body. The latter
two files are Jason's 64x64 bit and 32x32 bit icon files.

Now rename each of the copied files, replacing hero g jason with aragorn (in the
case of the 32x32 bitmap call this aragorn icon 32).

The files we have copied are in .DDT format and need to be converted to bitmaps so
that we can modify them.

Launch Ykkrosh's AOM Data File Converter by double clicking the relevant icon
in your AoM Mods folder, and click the Direct file conversion button.

-~ Data File Converter .?J}I_

Direct file conversion i Bulk conwerzion | Advanced options I |

Folder to extract data into | | |

Set input data file | |

Read data file |

Set autput data file | | |

Falder to read data from I I |

\ Write data file I 4
. "]

Page 43

4)

5)

6)

You will then by asked to Select data file for input. Go to your Mod
Files\textures folder and locate the aragorn head standard file and click Open.

A pop-up window will inform you that it is Converting to BMP — select an output
file in the following window. Press the OK button, and then press the Save
button on the following window.

This will save the file to the default file name — aragorn head standard.BMP and
you will be prompted with the message DDT image format "16-bit, 0 alpha [0],
5 mip-map levels (remember this number). This information is required when
you convert bitmaps to .DDT format.

I keep track of these numbers by renaming the .bmp file to include this information.

For example rename aragorn head standard.bmp to aragorn head standard
16 0 [0] 5.

Press OK, and repeat steps 3 — 5 for the aragorn shield and aragorn standard files in
the Mod Files\textures folder; and for the two icon files in the Mod Files\
textures\ icons folder.

Note that a number of different image formats will be use in the conversion so make
sure you use the right one when renaming your files. You should end up with the
following five (renamed) bitmap files:

AoM Mods\Mod Files\textures

aragorn head standard 16 0 [0] 5.bmp
aragorn shield 15 1 [1] 5.bmp
aragorn standard 15 1 [1] 5.bmp

AoM Mods\Mod Files\textures

aragorn icon 32 p16 0 [2] 1.bmp
aragorn icon 64 p16 0 [2] 1.bmp

Do not worry about what the formats mean at this stage, as normally you will just
stick to the format of the unit you base you mod on. Basically the different formats
just tell the game (p)aletted whether to use an expanded palette set or not, whether
the image uses transparent areas, player colors (or not) and how many facets are
included in the bitmap. The only real thing to remember is that if you get them
wrong the texture will not work.

Image Size

AoM can handle texture sizes up to 256x256bits, which equates to a 256x512 bit image if a
format that supports transparency or player colors is used. The larger the image size the
greater the detail you will be able to obtain from your in-game characters.

Most of the standard textures used in AoM are of a very low resolution, however these can
be scaled up when modding. This is what we will be doing with our Aragorn textures.

Page 44

6.2 Creating a New Body Texture

To create Aragorn's body texture we are going to enlarge the jason body bit map and using
some pre-developed artwork make a new texture.

1) In the AoM Mods\Mod Files\textures folder right-click on the aragorn
standard.bmp file and Open With Paint. You will see the following (small) bitmap.

2) From the Paint menu select [Image], Stretch/Skew and change the Vertical and
Horizontal Stretch to 400 (e.g. we want the image to be 4 times larger).

=1 What we can see on the top half of the image are
" the components of the texture for Jason's body.

The rear torso
The Front Torso
A Single Arm (duplicated by the model)

A Single Leg (duplicated by the model)

While on the bottom half of the image we have a
map of where the game will apply player colors
(the white areas).

Remember that the size is important and it must
be in a multiple of 2 (2, 4 and sometimes eight)
times the original size. If this proportions are not
maintained the file will not convert back to .DDT
format.

maamay

Page 45

3) To create our aragorn body texture we are simply going to cut and past the
segments for a new aragorn texture from the images provided with this guide. The
following shows the four segments contained in the aragorn body segments.bmp
file (note: the following is only a jpeg copy of this file).

ARM LEG

vl

FRONT TORS50 REAR TORSO

Find this file and open it using Paint.

4) In the copy of Paint that has the aragorn standard bitmap, select [Image] from
the menu and turn off Draw Opaque (there should be no tick next to it).

5) Now go into the aragorn body segments.bmp and one section at a time, lay it
over the original segment (arm — top left), leg (bottom left), front torso (middle) rear
torso (right).

6) Now fill the bottom half of the bitmap with black
(we do not want player colors). Just draw a
solid black square to do this.

The complete bit map should look like this.
7) Save the file.

8) Launch Ykkrosh's AOM Data File Converter
if it is not already running, and click the Direct
file conversion button. You will be prompted
with Select data file for input. Find the file
we just created (aragorn standard 15 1 [1]
5.bmp) in the AoM Mods\Mod Files\
textures folder and click open.

9) You will then be prompted with the message
Converting to DDT — select an output file in
the following window. Click OK.

10) The next screen will prompt Select data file to
create. Type in aragorn standard.ddt.

Page 46

Remember to type the ".ddt" or it will save it to the wrong format file.

11) A pop-up box will then prompt you for the DDT format. Click the button next to the
correct format (in this case 15-bit, 1-bit alpha [1]) and then OK.

Direct file conversion |

Bulk conversion

Data File C@nverterm

Setinput datatie ||

Falder to exiract data into | |

Read data file |

Set output data il | |

Folder to read data from | l

\ Wirite ciata file |

v

el DD T format o

¢ Paletted [16-bit), no alpha [Di
™ Paletted [16-hit]. no alpha [2]
™ Paletted [16-hit]. no alpha [2]
a Paletted (18-bit]. no alpha [4]
 Paletted (15-bit), no alpha
¢ Paletted [12-bit). 4-bit alpha
16kt no alpha [0]
16-bit, no alpha [1]
16-bit, no alpha [2]
1E-bit, no alpha [8]

15-hit, 1-tit alpha 0]

FE TR ey

16-hit, 1-hit alpha [1]
15-hit. 1-bit alpha [2]
15-bit, 1-bit alpha [3]
T2-bit, 4-bit alpha [0]

12+t 4-bit alpha [1]

TH AT TR TR ATy

12+, 4-bit alpha [2]

€ Behit greyseale, no alpha

Ok | Cancel |

12) A second pop-up box will prompt for the number of Mipmap levels (in this case 5)

and press OK.

Direct file conversion I Bulk conversion

Data File Converter _‘.?.I;?\

| Advanced options |

Set input data file | |

Folder to extract data into | |

Fead data file |

Set output data file | |

Folder to read data from I I

K\ Wirite data file [

Mipmap lexels: i

level:
£ 4 levels
& Glevels

Cancel

Page 47

13)

You will then be prompted Conversion finished. Press OK, and close/minimize the
Editor. You will now have a file in your AOM Mods\Mod Files\textures folder
called aragorn standard.ddt. Copy this file to the \textures folder in your
standard Age of Mythology folder.

Unless you mistakenly messed up the proportions of the bitmap you should have no
problems with the conversion to .DDT format. If it fails to convert:

a)

b)

Check the attributes of the bitmap. Its size in pixels should be 256 wide and 512
high.

Make sure you used the correct DDT Format and Mipmap levels.

OK, that is the general process for making new textures.

1)

2)

3)

4)

Convert the original .DDT file to a bitmap using the Direct file conversion option
of Ykkrosh's AOM Data File Converter.

If required, increase the size of the file using the Stretch/Skew function so that the
file is either 32, 64, 128 or 256 pixels wide and 32, 64, 128 or 256 pixels high for 16-
bit textures (the square ones) and 64, 128, 256 or 512 pixels high for the 15-bit
textures (the rectangular ones). The larger the size, the sharper the definition of
your new character.

Make the appropriate changes to the texture, using the initial texture areas as your
guide.

Convert the new .bmp file back into .DDT format using the Direct file conversion
option of Ykkrosh's AOM Data File Converter.

We now need to repeat this process for aragorn's head and shield.

6.3

1)

Creating a New Head Texture

Open the aragorn head standard 16 0 [0]
5 bitmap and stretch it to 800% (8 times it
initial size). The stretch function only
allows stretching up to 500% so you will
need to stretch it by 400% and then again
by 200%. Check its attributes, and it
should now be 256 pixels wide and 256
pixels high. It will look like this.

The head texture essentially sits on a three
sided face model with the blue bordered
section representing the face and the
purple bordered area representing the
sides and back of the head (e.g. it is

Page 48

2)

3)

4)

5)

6.4

1)

2)

replicated on both sides). The main trick with a new face texture is to ensure both
sides of the head match up with the face and that the level of the eyes and mouth
are in proportion. If you allow a small gap for where the neck would be the eyes are
roughly half way down the texture and the mouth three-quarters of the way down
(much like a human face).

Open the aragorn head segment.bmp
file provided with the guide, select all of it
and Copy and then Paste it into the
aragorn head standard bitmap. It
should now look like this:

Save the file.

Using the Direct file conversion option
of Ykkrosh's AOM Data File Converter,
convert the bitmap to a .DDT format using
filename = aragorn head standard.ddt,
DDT format 16-bit no alpha [0] and
Mipmap levels = 5.

Copy this file to the \textures directory in your default Age of Mythology folder.

Creating a New Shield Texture

Open the aragorn shield 15 1 [1] 5 bitmap
and stretch it to 400% (4 times it initial
size). Check its attributes, and it should
now be 256 pixels wide and 256 pixels high.
It will look like this.

The shield texture consists of four
segments the front of the shield (top left),
the back of the shield (top right), the
player coloring for the front of the shield
(bottom left) and the player coloring for
the back of the shield (bottom right).

Open the aragorn shield segment.bmp
file provided with the guide, select all of it
and Copy and then Paste it into the
aragorn shield bitmap. It should now
look like this:

You will notice that we are only changing
the front of the shield (top left) and
removing its player colors (bottom left)

3)

4)

5)

6.5

Save the file.

Using the Direct file conversion option of Ykkrosh's AOM Data File Converter,
convert the bitmap to a .DDT format using:

filename =
DDT format =
Mipmap levels =

aragorn shield.ddt
15-bit 1 alpha [1]
5.

Copy this file to the \textures directory in your default Age of Mythology folder.

Icons

Unlike the other texture files the Icon files used in AoM are placed directly into the user
interface screens and need to be of a set size. In the case of user icons these are 32x32
pixel and 64x64 pixel formats, however for major and minor god icons we also use 128x128
pixel and 256x256 pixel formats.

When making character icons, the quickest approach is create the 64x64 pixel icon; save it;
shrink it to 50%; and save it again as the 32x32 pixel icon file.

1)

2)

3)

4)

5)

6)

Open the aragorn icon 64 p16 0 [2] 1.bmp file from your AoM
Mods\Mod Files\textures\icons folder. It will ook like this. =—————
It is a portrait icon — that is what you see is what you get.

Open the aragorn icon segment.bmp file provided with this guide;
select all on the bitmap; copy and paste it to the aragorn icon 64
bitmap, which will then look like this:

A 4

Make sure the files attributes show that width and height are both 64 pixels and
Save the file.

Using the stretch/skew function reduce the image to 50% of its current size (width
and height) and Save as aragorn icon 32 16 0 [2] 1.bmp. You will need to over-
right the current file.

Using the Direct file conversion option of Ykkrosh's AOM Data File Converter,
convert the bitmap to a .DDT format using filename = aragorn icon 64.ddt, DDT
format Paletted 16-bit no alpha [2] and Mipmap levels = 1; and repeat these
steps for the smaller icon using filename = aragorn icon 32.ddt, DDT format
Paletted 16-bit no alpha [2] and Mipmap levels = 1;

Copy these two new .DDT files aragorn icon 32.ddt and aragorn icon 64.ddt to
the \textures\icons directory in your default Age of Mythology folder.

Page 50

We have now created the new textures for our Aragorn character and you should have the
following files in you Age of Mythology folder:

\texture\aragorn standard.ddt
\texture\aragorn head standard.ddt
\texture\aragorn shield.ddt
\texture\icons\aragorn icon 32.ddt
\texture\icons\aragorn icon 6432.ddt

We now just need to add the in-game text, and our modification is complete.

Page 51

7. In-Game Text

IMPORTANT NOTE: The Game Text Editor will automatically create a new language.dll file
when you save any changes and it will save this file into your default Age of
Mythology folder. So before making any changes go into your Age of Mythology folder
and locate the files language.dll (AoMTT and AoM) and xpacklanguage.dll (AoMTT only) and
rename these files for back-up purposes, e.g. languageold.dll, xpacklanguageold.dll. If you
want to revert to these files at a future date, just delete any new files you may have created
and rename these files back to their original names.

The unit names, messages and other texts used throughout the game are held in a separate
file called xpacklanguage.dll in AOMTT and language.dll in AoM. This file is simply an
indexed list of messages in the format fext _id text.

7.1 Adding New In-Game Text

To edit this file we use Vachu's AOM Game Text Editor. Double-clicking the Game Text
Editor icon in you AoM Mods folder will bring up the following screen.

£7] ¥vachu's AoM Game Text Editor I =] |

File Edit Options: ?

36 i VP Bt TP R W P32 TP AR TV A O il PO 200 P B e P 2t TP e DO 00 T 8.0 oy W P TP AR 2 T O 2l WO T T P e WP 5 T

: English

* Atheria makes infantry more resistant bo pierce attacks, such as arows.

: Goddezs of the hunt and nature. Her improvements aid archers.

: God of beauty. Hiz improvements help with siege and cawaly.

: Goddess of the underworld. Her improvements target mvth units.

: Beduces tribute penalty at the kMarket.

s Improves hitpoints of buldings and makes them more resistant to cruzh attacks, such az siege weapons.

: Baldr increaszes Dragon Boat speed and resistance to Hammer Ships,

: Heimdall grants increazed movement speed and hitpointz for Longhoats

: Freyja improves Valkyrie attack and healing rate.

: Dionpsus improves hitpoints of all unitz by a zmall amotnt,

: Tower hitpoints and attack ncreased.

¢ Ty ingtructs pour Llfsarks in the Berserkengang, impraving their attack and hitpoints.

: Aillows Towers, Migdolzs, Hill Forts. Faortreszes and Palaces to attack units beneath them.

: Thoth's zecrets allaw pour Laborers bo gather Food, Wood and Gald faster.

. Skadi's harvest lets Farmers work, Faster,

s Willagers gather “Wood Faster and camy mare.

* Tyr drives Huzskarlz to do mare damage, especially to buildings.

: Hephaestuz reforges Colossi to Sikver Colozsi with more hitpoints.

: Humnan soldiers and shipz mare resistant to hack. attacks, such as swords;

: Human soldiers and shipz more resistant bo pierce attacks, such as armows,

: Improves attack of all human soldiers, ships and buildings.

»Archers, arrow ships, Ballistae and Cheiroballiztae fire flaming mizsiles for greater attack vs. buildings and ships.

s Arez lends the Spear of Panic to increaze Hoplite attack.

; Bragiimproves Ulfsark hitpoints.

D Willagers gather “Wood Faster and cary more.

: Increaszes line of sight for all buildings.

: Target arywhere on the map to prevent eveny plaver from fighting and building T owers or fortrezses Far a short penu:u:l af time.

- Archers irnnroweed e Charmnine ;'.\rr*liuﬁm with rnre kitnninks and attark _I_l
k

4 T P Rt T A PTG [R A] TR P b ST P ASLac LIS
e T e T

P P AR o PR W T P ST LS A P

bt o Hegame . com

i
£
E:
i
§:
§:
g:
g
i:
K
gl
B
&3
g
i
£
g
. 3
i

This screen allows us to Add, Delete or Edit text entries and on Saving the file a new
language.dll file will be created.

Page 52

Text messages can be simple text or use hot links to overview files held in your \History
folder. This linking feature allows you to navigate around the unit information screens
during game play — e.g. you can look at information on the character, click on the building
where upgrades for the character are undertaken and click on specific technologies available
from that particular building.

For our Aragorn character we need to create the six (6) text entries we made reference to in
our proto unit definition:

<displaynameid>60000</displaynameid>
<rollovertextid>60001</rollovertextid>
<rolloverbonusdamageid>60002</rolloverbonusdamageid>
<rolloveruseagainstid>60003</rolloveruseagainstid>
<rollovercounterwithid>60004</rollovercounterwithid >
<rolloverupgradeatid>60005</rolloverupgradeatid>

Our first text entry is the name we want displayed for our character (Aragorn). To enter
this we press the Add button in Vachu's AOM Game Text Editor. Enter 60000 in the Id
field and Aragorn in the Text field

o I_I ruk H 3| Bon

s glink=s pmta Uruk Hai B =N pmtu Orc Capapulty>Orc Eapapult<.*'||nk> <I|nk % proto
: <I|nk '\"pn:ntu:n Orc: Capap prota (H]{s Balllsta\")[lrc Balllsta(r"||l"|k> <I|r'|k '\"prntn Orz B amt”

<l k 2 F ot
: Ellrr;s ndd anewkte; t strln-" i

A A e PR Y e T B T

D aladriely
M aceman:
rc Ramh”
o Ramh”

A

e Ramb
rc Ramh
e Rarmh”
*

i e R LS AT

; = b acemar:
proto:Lruk. Hai Swordsman’' > Liruk Hai Swordsman(:’lmb link= |:|n:|t|:| Uruk Hai Maceman’' > Uruk Hai Macemar:
: Rohirim Riders, Ents
: Rohirmim Riders, Ents
- Infantny, Cavaly, Archers
s Infanto, Caval, Archers
: Rohimm Riders, Ents
: Rohirim Riders, Ents
- Heroes
- Elven &rchers, Archer Heroes

= clink=3"rrata M Cananilts s Mre Cananlks ik > <link= Whrakee Mee Ballistah' s Mee Ballistas .-"|II"|k} ¢link=4"rrat Fre Fanmit 2

hitouffacm Hegamer.cam | :

Then press OK.

Page 53

Now repeat this for our rollovertextid — this is the message that is displayed in the bottom
left hand corner when the unit is selected.

For our next four text messages we want to create links to other information held in the
game.

The first of these — the rolloverbonusdamageid — refers to the units where we defined a
special damage bonus when defining the proto units attack. For Aragorn we gave a generic
damage bonus for all units of type Myth Unit. For our text message we want to make a link
the topic of Myth Units.

Within the text editor we can make links to files held in the history(2) folder by defining a
link to either a topic — a file in the history2 folder or a proto — a file in the history2\units,
history2\techs or history2\mods sub-folders.

The format of these links is

<link=\"topic: filename\"> linktext< [link> or
<link=\"proto: filename\" > linktext< /link >

where filename is the name of the file from the History2 folder or its sub-folders and linktext
is the text that will appear on the screen (highlighted and enabled as a hot link).

Hot links can to concatenated using a mixture of topic and proto references:
<link=\"topic:archers\">archers</link>, <link=\"proto:Axeman\">Axeman</link>,
<link=\"proto:Hypaspist\">Hypaspist</link>, <link=\"proto:Throwing

Axeman\">Throwing Axeman</link>

This will set links to the topic of archers and to the unit descriptions of the key ranged unit
within the game.

A mixture of text and links can also be used, for example.
Wall, <link=\"proto:Settlement Level 1\">Town Center</link>

The in-game text will display Wall, Town Center with a hot link on the Town Center entry.

Page 54

For Aragorn we will just do a simple link to the Myth Unit Topic, as follows:

Add a new text skring § !
.II.-'.I':-' T i N = B T £ R s s S P B et = RS i e Wi = T P i S R =1 ----"-'--1'-l'-'-'='-.‘.'-r=" U e THE

i

%Elsnpnz.

Text
|<Iink="-,"t_|:upi|:: Ptk Uit bpth L nits|<_.n’|i_nk>

For the RolloverUseAgainstIld we can use a link to both Myth Units and Human Soldiers
(after all Aragorn is great against anyone!)

So add another text string with Id=60003 and Text = <link=\"topic:myth units \">myth
units </link>, <link=\"topic:human soldiers \">human soldiers </link>.

For the RolloverCounterWithId we will just create a link to Heroes. This will tell opponents
the best unit to attack Aragorn with. So add our next text string Id=60004 and Text =
<link=\"topic:Heroes\">Heroes</link>.

Our final text string for this unit is the RolloverUpgradeAtId. This tell players which
buildings to use to upgrade the Aragorn unit. Note we have not created a building to create
Aragorn or added any technologies to upgrade him yet, so for the time being we will just
use text entries. Our last text string will be Id = 60005 and Text = House of Elrond, Elven
Armory.

Once you have made the changes click File and Save in the Text Editor. This will create a

new language.dll file in your default Age of Mythology folder. If you are using AOMTT you
will need to rename this file to xpacklanguage.dll.

Page 55

8. Histories

The last thing we need to do is to create a history file for Aragorn. We do this by creating a
file in our AoM Mods\Mod Files\history folder call Aragorn.txt. The contents of this
file follow the same format as we used in the text entries — they can be freeform text or
links to topics or proto descriptions. For the time being, just Copy the following Text and
Paste it into your Aragorn.txt file. Then save the file and copy it into the history2\units
folder in your default Age of Mythology folder.

A descendant of the lost line of the ancient kings of Men, Aragorn is fated to one day
claim the empty throne of Gondor. Aragorn is a mighty warrior, wielding his blade
with great adeptness in defense of Helm's Deep. He fights with passion and bravery,
but also with wisdom, which earns him the respect and admiration of Théoden, King
of the Rohirrim. In The Return of the King, he will face several challenges that will
determine the fate of Middle-earth.

Page 56

9. Sounds

Each unit in AoM(TT) has a sound definition file that associates standard or your own sound
files to specific actions or situations the unit encounters. Sound file names use the format
unitname_snds.xml with the converted version called unitname_snds.xmb. Both
production files are stored in the default Age of Mythology\sound folder.

The following is the sound file for our Aragorn character.

<?xml version="1.0" encoding="UTF-8"?>

<protounitsounddef>
<protounit name="Aragorn">
<soundtype name="Select">
<soundset name="MilitaryAtlanteanSelect"></soundset>
</soundtype>
<soundtype name="Grunt">
<soundset name="MaleGrunt"></soundset>
</soundtype>
<soundtype name="Hit">
<damagetypelogic>
<choice name="Crush">
<soundset name="CrushFlesh"></soundset>
</choice>
<choice hame="Fire">
<soundset name="HackFlesh"></soundset>
</choice>
<choice name="Hack">
<soundset name="MetalSlice"></soundset>
</choice>
<choice nhame="Pierce">
<soundset nhame="PierceFlesh"></soundset>
</choice>
<choice nhame="Slash">
<soundset name="MetalSlice"></soundset>
</choice>
</damagetypelogic>
</soundtype>
<soundtype name="Death">
<soundset name="MaleDeath"></soundset>
</soundtype>
<soundtype name="Creation">
<soundset name="HeroBirth"></soundset>
</soundtype>
<soundtype name="Acknowledge">
<targetlogic>
<choice name="default">
<soundset name="MilitaryAtlanteanAcknowledge"> </soundset>
</choice>
<choice name="enemy">
<soundset name="MilitaryAtlanteanAttack"></soundset>

</choice>
</targetlogic>
</soundtype>
</protounit>
</protounitsounddef>

It is simply a copy of the standard atlantean military unit sound file with the protounit name
field set to our new proto unit name (Aragorn).

Page 57

The various soundset names are help in a file called soundsets-xpack.xml (AoMTT) or
soundset.xml (AoM) and these contain a list of all the soundsets and the sound files they
relate to.

The following is an extract from the start of this file. You can get this by using the Direct
file conversion option of Ykkrosh's AOM Data File Converter, to convert the .XMB
version of the file to .XML format.

<?xml version="1.0" encoding="UTF-8"?>

<soundsetdef>

<soundset maxnum="3" name="GatherChop" volume="0.4000">
<sound filename="Woodchop1l.wav" volume="1.0000"></sound>
<sound filename="Woodchop2.wav" volume="1.0000"></sound>
<sound filename="Woodchop3.wav" volume="1.0000"></sound>

</soundset>

<soundset maxnum="3" name="GatherFlay" volume="0.1500">
<sound filename="meatgatherl.wav" volume="1.0000"></sound>
<sound filename="meatgather2.wav" volume="1.0000"></sound>

</soundset>

<soundset maxnum="3" name="GatherMine" volume="0.5000">
<sound filename="minel.wav" volume="1.0000"></sound>
<sound filename="mine2.wav" volume="1.0000"></sound>
<sound filename="mine3.wav" volume="1.0000"></sound>

</soundset>

<soundset maxnum="2" name="Arrow" volume="0.3000">
<sound filename="Arrow1l.wav" volume="1.0000"></sound>
<sound filename="Arrow2.wav" volume="1.0000"></sound>
<sound filename="Arrow3.wav" volume="1.0000"></sound>
<sound filename="Arrow4.wav" volume="1.0000"></sound>
<sound filename="Arrow5.wav" volume="1.0000"></sound>

</soundset>

If you want to add new sounds, you need to store them in the sounds folder and create a
new unique <soundset ..> definition. Once defined this soundset can be referred to from
any of the _snd.xmb files.

For now just create a file name aragorn_snds.txt in your Mod Files\sound folder, and copy
and paste the earlier details. Save the file and using the Direct file conversion option of
Ykkrosh's AOM Data File Converter, to convert the .XML version of the file to .XMB
format.

Then place a copy of both files into the \sound folder of your default Age of Mythology
folder.

Page 58

10. Checking Our New Unit

Before we check out our new unit, let us just do a quick check:

1)

2)

3)

4)

5)

6)

Our new PROTOX.XML or PROTO.XML file has been successfully converted
to .XMB format and the new PROTO(X).XMB file has been copied into the \data
folder in the default Age of Mythology folder.

Our new anim file — aragorn_anim.txt — has been copied to the \anim folder in
the default Age of Mythology folder.

The three character textures for aragorn — standard, head standard and shield have
been successfully converted to .DDT format and the .DDT files have been copied to
the \textures folder in the default Age of Mythology folder.

The two icon textures for aragorn —aragorn icon 32 and aragorn icon 64 have been
successfully converted to .DDT format and the .DDT files have been copied to the
\textures\icons folder in the default Age of Mythology folder.

Our new in-game text has been added and saved to create a new language.dll file
in the default Age of Mythology folder, and if we are using AOMTT this file has been
renamed xpacklanguage.dll.

Our new history file aragorn.txt has been created and copied into the
history\units folder (AoM) or history2\units folder (AoMTT) in the default Age of
Mythology folder.

Once each of these nine (9) files is correctly installed in the default Age of Mythology folder
you are ready to test the new character.

1)

Log into AoM(TT) and go into the Editor. Select Place Unit and the Aragorn
character should be on the list and on selecting this character you should be able to
place it.

If not

If Aragorn is not in the list of available units, the game is not picking up the new
PROTO(X) file and you should recheck that you placed it in the correct folder. It
should be in the AGE OF MYTHOLOGY\DATA folder.

If the characters are there, but their names are proceeded by three asterisks (e.g.
*** Aragorn), the game is not picking up the xpacklanguage.dll file. It should be in
the default Age of Mythology folder (e.g. not in a sub-folder).

If the character's name is present but the unit is blank the game is either not picking
up the anim file or the anim file cannot find the relevant model. In case of the
former, the anim file is probably in the wrong place (check that they are in your Age
of Mythology\anim directory). In the latter, it may be that the anim is calling a
model that you do not have installed. If so, check that you did not accidentally
change the name of the original hero g jason visual definitions).

Page 59

2)

3)

If the unit is there, but looks like an existing unit (e.g. if Aragorn still looks like Jason)
then the game is not picking up the new texture files. Check that they are in the
AGE OF MYTHOLOGY\TEXTURES directory.

Unless you were just missing a texture you will need to exit AoM(TT) fix the problem
and restart.

Otherwise you should have a character that looks like this:

Now click on the Scenario Menu and select Scenario Data and then change the
Scenario settings to not use Victory Conditions (there should be no x next to it).
Then Play Test the Scenario.

When you select Aragorn, his icon should be displayed in the bottom center of the
screen. If it is not there or is garbled then either the icon is not in the Age of
Mythology\textures\icons folder or when it was converted to .DDT format the
incorrect format or mipmap levels were set.

a) Check that the file is in the right place (if not copy it into the correct folder).

b) If it is there, recheck your two icon bitmaps and make sure they are 32x32
pixels and 64x64 pixels.
C) Convert your bitmaps again using the instructions at the end of Chapter 6.

Page 60

4)

5)

6)

Note that Texture files are loaded dynamically so you do not need to restart the
game.

When you place your mouse over Aragorn or his icon the rollovertext should be
displayed in the bottom left hand corner. If not check that the changes you made
for text id 60001 are OK. If you did not get "*** before Aragorn in the unit
placement the language file is being picked up OK. You will need to restart the
game to pick up any changes.

Double-click on the Aragorn Icon and this will bring up the in-game help. In the
middle section of the help screen will be the other rollover texts you created, click on
the hot links to check that they work. If they are not there, recheck the text entries
(ids 60002-5) making sure you check that the text id and the syntax of the link
statements is correct. You will need to restart the game to pick up any changes.

The bottom of the screen should display the text from Aragorn's history file. If not
make sure that the aragorn.txt file is in the correct folder (\history for AoM and
\history2 for AOMTT). These files are dynamically loaded so you do not need to
restart.

Congratulations you have just created a new character!

Page 61

11. Buildings

In order to use a character in normal Single Player mode you need somewhere to train
(create) the character. You can achieve this by modifying an existing building's proto
definition (the easiest way), or by creating a new building.

When creating a new building we end up with a chicken and egg situation whereby in order
to create a new building we need a builder — which again can be an existing or new
character and so forth. The result of this is that to create a building the chain of events that
leads to that building must start with a character that is created in a Town Center that is
placed during game initialization. As we will discuss later, this can be our own customized
Town Center as part of our own culture, but for the time being we are going to look firstly at
adding our unit to an existing building, and secondly at creating a new building and enabling
a standard AoM(TT) character to build it.

11.1 Enabling an Existing Building to Train a New Character

To begin with we are going to modify the Longhouse protounit to enable it to train Aragorn.
The Longhouse is unit id="485" in AoOMTT and unit id="421" in AoM.

The following is a copy of the proto unit description for the Longhouse. You will notice that
the definition is similar to that used for normal characters. The main difference is the center
section of the definition. This is the part we are interested in. It defines units that can be
trained at this building and the technologies that can be researched there, and is discussed
in more detail later. The differences between Building and Character definitions are
discussed through the definition.

<unit id="485" name="Longhouse" >
<dbid>2210</dbid>
<displaynameid>19701 </displaynameid>
<icon>icon building barracks</icon>
<maxcontained>5</maxcontained>

The maxcontained field is used for buildings that can garrison other units and
equals the total population of the units that can be contained in the building.

<initialhitpoints>1200.0000</initialhitpoints>
<maxhitpoints>1200.0000</maxhitpoints>
<los>9.0000</los>

<portraiticon>Building Barracks Icon 64</portraiticon>
<obstructionradiusx>4.0000</obstructionradiusx>
<obstructionradiusz>4.0000</obstructionradiusz>
<deadreplacement>Destruction 4x4</deadreplacement>

When buildings are destroyed they leave a rubble mound on the ground. The
deadreplacement field tells the game which anim to use for this. The are 15
anims named destruction xxxx.txt that you can use. Usual the file is
determined by the buildings size, e.g. Destruction 4x4, Destruction 8x8 etc.

<maxvelocity>0.0000</maxvelocity>

Buildings do not move so there maxvelocity is zero.

Page 62

<movementtype>land</movementtype>
<buildpoints>30.0000</buildpoints>
<buildingworkrate>1.0000</buildingworkrate>

Each unit or technology has a number of points that determine how long it
will take to train/research. The buildingworkrate determines how many
buildpoints per second the building will achieve. This parameter is useful
when developing technologies that improve the production speed for all units
and technologies from a given building. Instead of reducing the trainpoints
for each unit and technology you can get the same effect by increasing the
buildings workrate. God powers such as pestilence can also manipulate this
value to slow down production.

<allowedheightvariance>4.0000</allowedheightvariance>

This parameter is used to determine how steep a slope the building can be
built on. In this case an allowedheightvariance of 4 roughly equates to a
45% angle.

<allowedage>2</allowedage>

<cost resourcetype="Wood">110.0000</cost>

<bounty resourcetype="Favor">4.3200</bounty>
<bountyfactor resourcetype="Favor">1.0000</bountyfactor>
<bounty resourcetype="Gold">5.0000</bounty>
<rollovertextid>16548</rollovertextid>
<rollovercounterwithid>17685</rollovercounterwithid>
<rolloverupgradeatid>17729</rolloverupgradeatid>
<buttonpos column="0" page="2" row="0"></buttonpos>
<decay delay="0.0000" duration="1.0000"></decay>

The decaydelay determines how long (in minutes) the deadreplacement
model will remain in use after the destruction of the building.

<armor damagetype="Hack" percentflag="1">0.30</armor>
<armor damagetype="Pierce" percentflag="1">0.96</armor>
<armor damagetype="Crush" percentflag="1">0.05</armor>
<allowedculture>Norse</allowedculture>
<unittype>LogicalTypeVolcanoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAutoAttack</unittype>
<unittype>LogicalTypeAffectedByRestoration </unittype>
<unittype>LogicalTypeTornadoAttack</unittype>
<unittype>LogicalTypeSuperPredatorsAttack </unittype>
<unittype>LogicalTypeConvertsHerds</unittype>
<unittype>LogicalTypeFimbulWinterTCEvalType</unittype>
<unittype>LogicalTypeEarthquakeAttack</unittype>
<unittype>LogicalTypeSiegeAutoAttack</unittype>
<unittype>LogicalTypeNeededForVictory</unittype>
<unittype>LogicalTypeHandUnitsAutoAttack</unittype>
<unittype>LogicalTypeBuildingNotTitanGate</unittype>
<unittype>LogicalTypeValidDeconstructionTarget</unittype>
<unittype>LogicalTypeBuildingsThatTrainMilitary </unittype>
<unittype>LogicalTypeBuildingsNotWalls</unittype>
<unittype>LogicalTypeBuildingsNotHouses</unittype>
<unittype>LogicalTypeTimeshift</unittype>
<unittype>LogicalTypeRangedUnitsAutoAttack</unittype>
<unittype>LogicalTypeVillagersAttack</unittype>
<unittype>LogicalTypeHandUnitsAttack</unittype>
<unittype>LogicalTypeRamAttack</unittype>
<unittype>LogicalTypeRangedUnitsAttack</unittype>
<unittype>LogicalTypeTartarianGateValidOverlapPlacement</unittype>
<unittype>LogicalTypeValidForestFireTarget</unittype>

Page 63

<unittype>LogicalTypeSeaSerpentAttack</unittype>
<unittype>LogicalTypeValidMeteorTarget</unittype>
<unittype>LogicalTypeMinimapFilterMilitary</unittype>
<unittype>Building</unittype>
<unittype>BuildingClass</unittype>
<unittype>MilitaryBuilding</unittype>
<unittype>AbstractBarracks</unittype>
<unittype>ConvertableBuilding</unittype>
<unittype>Age2Building</unittype>

The above unittype definitions are used to determine which building
technologies are available.

<train column="1" page="1" row="0">Throwing Axeman</train>
<train column="0" page="1" row="0">Ulfsark</train>

<train column="3" page="1" row="0">Raiding Cavalry</train>
<train column="2" page="1" row="0">Hero Norse</train>

<tech column="0" page="1" row="1">Medium Infantry</tech>
<tech column="0" page="1" row="1">Heavy Infantry</tech>
<tech column="0" page="1" row="1">Champion Infantry</tech>
<tech column="0" page="1" row="2">Lone Wanderer</tech>
<tech column="0" page="1" row="2">Eyes in the Forest</tech>
<tech column="4" page="1" row="1">Thundering Hooves</tech>
<tech column="1" page="1" row="2">Call Of Valhalla</tech>
<tech column="1" page="1" row="1">Huntress Axe</tech>
<tech column="3" page="1" row="1">Heavy Cavalry</tech>
<tech column="3" page="1" row="1">Medium Cavalry</tech>
<tech column="3" page="1" row="1">Champion Cavalry</tech>
<tech column="5" page="1" row="1">Sons of Sleipnir</tech>
<tech column="3" page="1" row="2">Berserkergang</tech>
<tech column="2" page="1" row="2">Swine Array</tech>

<tech column="2" page="1" row="1">Hall of Thanes</tech>
<tech column="5" page="1" row="0">Levy Longhouse Soldiers</tech>
<tech column="5" page="1" row="0">Conscript Longhouse Soldiers</tech>
<tech column="4" page="1" row="2">Axe of Muspell</tech>

This is the train/tech section we will discuss in more detail below.

<flag>PaintTextureWhenPlacing</flag>
<flag>NoIdleActions</flag>
<flag>ObscuresUnits</flag>
<flag>HasGatherPoint</flag>

This flag lets you set a Gather Point for units created at the building.

<flag>Immoveable</flag>
<flag>NoBloodOnDeath</flag>
<flag>NonAutoFormedUnit</flag>
<flag>CollidesWithProjectiles</flag>
<flag>DontFadeInOnBuild</flag>
<flag>Doppled</flag>
<flag>InitialGarrisonOnly</flag>

This flag tells the game that only units created at the building can be
garrisoned there.

<flag>SelectWithObstruction</flag>
<flag>FlattenGround</flag>

This flag tells the game to flatten the terrain around the building before
placing it.

Page 64

<flag>Tracked</flag>
<\unit>

11.2 Using Building to Train Units

In the standard proto definition the Longhouse can train 4 units — Throwing Axeman, Ulfsark,
Raiding Cavalry and Hero Norse (Hersirs). On each line you will notice that it defines the
column, page, and row. These definitions tell the game where to locate the train/tech icon
for each particular unit and technology.

<train column="1" page="1" row="0">Throwing Axeman</train>
<train column="0" page="1" row="0">Ulfsark</train>

<train column="3" page="1" row="0">Raiding Cavalry</train>
<train column="2" page="1" row="0">Hero Norse</train>

<tech column="0" page="1" row="1">Medium Infantry</tech>
<tech column="0" page="1" row="1">Heavy Infantry</tech>
<tech column="0" page="1" row="1">Champion Infantry</tech>
<tech column="0" page="1" row="2">Lone Wanderer</tech>
<tech column="0" page="1" row="2">Eyes in the Forest</tech>
<tech column="4" page="1" row="1">Thundering Hooves</tech>
<tech column="1" page="1" row="2">Call Of Valhalla</tech>
<tech column="1" page="1" row="1">Huntress Axe</tech>
<tech column="3" page="1" row="1">Heavy Cavalry</tech>
<tech column="3" page="1" row="1">Medium Cavalry</tech>
<tech column="3" page="1" row="1">Champion Cavalry</tech>
<tech column="5" page="1" row="1">Sons of Sleipnir</tech>
<tech column="3" page="1" row="2">Berserkergang</tech>
<tech column="2" page="1" row="2">Swine Array</tech>

<tech column="2" page="1" row="1">Hall of Thanes</tech>
<tech column="5" page="1" row="0">Levy Longhouse Soldiers</tech>
<tech column="5" page="1" row="0">Conscript Longhouse Soldiers</tech>
<tech column="4" page="1" row="2">Axe of Muspell</tech>

These icons are displayed on the bottom left hand side of the screen when the building is
selected; and as you may remember, this area allows for up to 3 rows of 5 icons, with the
ability for a second page.

The column therefore defines the icons position horizontally (1-5), the page defines the
page number (1-2) and the row defines the vertical position (0-2).

When adding additional units of technologies to a building the only trick is to pick a location
not already in use. If you pick a location already used the last reference to that position will
take it, and the other character or technology will be unavailable. If you look at the last two
technologies you will notice that they take the same position — in this case it is intentional as
the "Levy" technology is the prerequisite for the "Conscript" technology. When this icon is
activated by the techtree(x) the "Levy" technology will already be active and the "Levy"
icon no longer required.

In the Longhouse definition there is a gap at column="4" page="1" row="0". We will
use this gap to insert a train statement for Aragorn.

Page 65

11.3 Modifying a Building's Proto Definition

1) In your AoM Mods\Mod Files folder open the PROTO(X).XML file.
2) Scroll down to the train section for unit 485 (PROTOX) or unit 421 (PROTO)

3) Between the train definition for Hero Norse and the Tech definition for Medium
Infantry insert the train statement for Aragorn as follows:

<train column="2" page="1" row="0">Hero Norse</train>
<train column="4" page="1" row="0">Aragorn </train>
<tech column="0" page="1" row="1">Medjum Infantry</tech>

making sure that you use the correct column, page and row values.

4) Save the File and using the Direct file conversion option of Ykkrosh's AOM Data
File Converter convert the saved PROTO(X).XML file into .XMB format.

5) Copy the new PROTO(X).XMB file from your AoM Mods\Mod Files\data folder
to the default Age of Mythology\data folder.

This building now has the capability to build Aragorn — once the protounit has been enabled
by the Techtree(X) as discussed in Chapter 11.

This approach works fine when you are creating a single unit, however to expand your
character while retaining the standard AoM protounits eventually you will want to being
creating your own buildings.

11.4 Creating a New Building Proto Definition

Creating a building involves the same process as making a unit — create a new proto
definition, anim, textures, text, and history. For the sake of this example we are going to
keep our new building simple creating a House of Elrond based on a Hill Fort (unit id
489 (AOMTT) or unit id 425 (AoM). Note: AOMTT users who want a more elven looking
building may prefer to base their House of Elrond on the Palace proto unit (unit id 706).

1) Open the PROTO(X).XML file and select the protounit you wish to use and Copy
the full definition beginning with

<unit id="489" (or 425 or 706)

to the corresponding <\unit>.

2) Go to the end of the PROTO(X).XML and between the last <\unit> (the end of the
Aragorn definition) and the <\proto> statement, Paste the copied definition.

3) On the first line of the copied definition change the unit id to 802 and the name to
"House of Elrond".

Page 66

4)

5)

6)

7)

8)

9)

Change the second line to <dbid>2849</dbid> 2654 for vanilla AoM.

Change the four (4) references to in-game texts to the numbers we will be using.

<displaynameid>60006</displaynameid>

<rollovertextid>60007</rollovertextid>
<rollovercounterwithid>60008</rollovercounterwithid>
<rolloverupgradeatid>60009</rolloverupgradeatid>

Change the <allowedage> field to 1.

<allowedage>1</allowedage>

Go to the train/tech section and delete all train/tech definitions other that the first
train entry.

Change the train entry to
<train column="1" page="1" row="0">Aragorn </train>

You will notice that whereas the Longhouse had no actions associated with it there
are three actions defined for both the Hill Fort and Palace (Hand Attack, Ranged
Attack and Enter) just before the </unit> definition.

The first action — Hand Attack is similar to that used in the character definition but
with a higher maximum range. This range needs to be higher as the game
associates the center of the building with its location (for calculating range). As the
building has a 5x5 footprint a maximumrange of 1 would mean that units would not
get close enough to the building to be within its hand attack range. Also note that
the third parameter is "Inactive". This means that the building has no hand attack in
its initial Age 1 format — it is made active using the Boiling Oil technology. This will
often be the case, as you may want certain actions to be deferred to later in the
game. The important thing to remember is that they still need to be defined up-front.

<action name="HandAttack">
<param name="MaximumRange" valuel @ /param>
atastype="All" valuel="5%"></param>

<param name="AttackAction"></param>
<param name="DamageBonus" type="Ship" valuel1="3"></param>
</action>

The Ranged Attack is also similar to the action we discussed in Chapter 3, however it
introduces two useful parameter options VolleyMode and NumberProjectiles. The
NumberProjectiles determines how many projectiles will be fired from the building
and VolleyMode signifies that all projectiles will be fired in synchronized volleys (this
is preferred when rushed by a large number of units as at least one projectile in a
volley has a good chance of hitting the target).

<action name="RangedAttack">
<param name="MinimumRange" valuel="4"></param>
<param name="MaximumRange" valuel1="18"></param>
<param name="Damage" type="Pierce" value1="10"></param>

Page 67

10)

<param name="Accuracy" value1="0.9"></param>

<param name="Rate" type="All" value1="1.0"></param>

<param name="AttackAction"></param>

<param name="MaxSpread" value1="5.0"></param>

<param name="SpreadFactor" value1="0.1"></param>

<param name="TrackRating" value1="5.0"></param>

<param name="UnintentionalDamageMultiplier" value1="0.5"></param>

<param name="AccuracyReductionFactor" valuel1="1.5"></param>
2= aluel="15"></param>

param>

' value1="3.0"></param>

<param name=

<param name="DdMmageBent pe="Ship" valuel="6"></param>
<param name="HeightBonusMultiplier" value1="1.25"></param>
</action>

The Enter action, is a standard requirement for any building used to garrison units.
The range determines how far away the unit has to be (from the center of the
building) to be garrisoned.

<action name="Enter">
<param name="MaximumRange" valuel="10"></param>
</action>

If you used the Longhouse as the basis of your building insert these 3 actions just
before the House of Elrond's </unit> definition.

As the House of Elrond is also a House of Healing, after the last action , (<action
name ="enter">) and before the </unit> definition insert the following new action

<action name="Heal">

<param name="MaximumRange" value1="10.0"></param>

<param name="Rate" type="LogicalTypeCanBeHealed" valuel="2.0"></param>
</action>

This actions states that any injured unit of LogicalTypeCanBeHealed will be healed at
the rate of 2 hitpoints per second in within 10 units of the center of the building.

That competes the definition of the House of Elrond. Now we need to let someone build it.

To do this we are going to change the proto unit definition for Villager Norse (AoMTT unit id
= 484, AoM unit id = 420.

11)

Find the relevant protounit in your PROTO(X).XML file and scroll down to the line
that says:

<train column="0" page="1" row="0">Farm</train>
after this line insert the train command for the House of Elrond

<train column="1" page="1" row="0">House of Elrond</train>

Now scroll down a bit further to the action definition for Build and insert the Rate
information for House of Elrond.

<action name="Build">
<param name="Rate" type="Farm" value1="1.0"></param>

Page 68

11)

12)

» <param name="Rate" type="House of Elrond" value1="1.0"></param>
</action>

All we have done here is added another type of building that the villager can
build/train and defined how many of its build points per second the builder will
accomplish. Now instead of only being able to build farms Villager Norse will be able
to build a House of Elrond.

Save the PROTO(X).XML file.

Launch Ykkrosh's AOM Data File Converter and using the Direct file
conversion option, convert the PROTO(X).XML file to .XMB format.

If for some reason the conversion fails this will almost certainly due to a syntax error.
So check.

a) That the unit definition preceding the new House of Elrond unit (Aragorn) ends
with </unit>

b) That the House of Elrond unit definition ends with </unit>

c) That immediately after the Aragorn unit definition is the end of protounit
definitions </proto> and that there is nothing after it.

d) That the other lines changed have the correct syntax in terms of the definition
start and finish.

If the conversion was successful copy the new PROTO(X).XMB file to the \data
folder in your standard AoM folder.

This version of the PROTO(X).XMB file will enable Aragorn to be created at a
standard Norse Longhouse or at the House of Elrond. Note: If you want to keep
your standard AoM building "pure", you can delete the changes you made to the
Longhouse definition.

11.5 Creating a New Building Anim

For the time being, we do not need to do anything fancy with our new building — we just
want to a place to create Aragorn. As such all we need to do for our House of
Elrond_anim is:

1)

2)
3)

4)

Find the anim for our base unit in the AoM Mods\Source Files\anim directory
(Longhouse_anim.txt or Palace_anim.txt).

Copy the file and Paste it to your AoM Mods\Mod Files\anim folder.
Rename the file to House of Elrond_anim.txt.

Copy the new House of Elrond_anim.txt file to the default Age of Mythology\
anim folder.

Page 69

This anim will create a direct replica of the original building when a House of Elrond is
placed, but will use the new proto unit definition allowing Aragorn to be trained.

11.6 Customizing the Building

To customize this building you would need to re-edit the house of elrond_anim.txt file
and include the relevant ReplaceTexture statements to allow you to link the chosen model
to a new set of textures.
If you based it on the Hill Fort, after every occurrence of:

Visual Building N Hillfort AND Visual Building N Hillfort Age4

you would insert the line

ReplaceTexture building n hillfort/house of elrond

You would then use the building n hillfort texture as the basis of your
house of elrond texture.

Note: the other visuals are used as in-construction models and do not need
their textures changed.

If you based it on the Palace, after every occurrence of:
Visual Building X Palace Age2 AND Visual Building X Palace Age3
you would insert the lines

ReplaceTexture building x palace age2/house of elrond
ReplaceTexture building x palace roof/house of elrond roof

OR

ReplaceTexture building x palace age3/house of elrond
ReplaceTexture building x palace roof age3/house of elrond roof

You would then use the building x palace age2 and building x palace
roof textures as the basis of your house of elrond texture.
To create new textures for the House of Elrond you would:

1) Copy the relevant texture files from the AoM Mods\Source Files\textures folder
to the AoM Mods\Mod Files\textures folder:

building n hillfort.ddt

OR
building x palace age2.ddt

Page 70

building x palace age roof.ddt

2) Rename the files house of elrond.ddt and house of elrond roof.ddt (if using the
Palace).

3) Using the Direct file conversion option of Ykkrosh's AOM Data File Converter
convert the files from .DDT to .BMP format, as discussed in Chapter 6 and
remembering to record the DDT format and Mipmap levels.

15-bit, 1-bit alpha [1], 5 mip-map levels for the house of elrond.bmp
16-bit, 0-bit alpha [0], 5 mip-map levels for the house of elrond roof.bmp

Depending on your base unit you will have the following bitmaps:

Hillfort (50% scale) In-game View

Palace (50% scale) Palace Roof (100% scale) In-game View

4) Look at the textures and the in-game view and you will see how the various frames
in the textures are mapped to the building. You will also notice that not all of the
features are shown. For example, the hill fort roof - this texture is probably derived

Page 71

from a file call woodroof.bti, which is a general purpose texture used in the game
which cannot be modified. Similarly with the palace the window slits are part of the
model and are therefore fixed (as I assume is the portico — I cannot find where it
gets these defined). Other features such as the vines on the Palace are defined in
the anim file and use separate texture files.

With careful editing you can change the various frames to modify the look of your
building. Artwork or samples of textures (marble for example) could be used to this
end.

5) Once the texture(s) are modified you would convert the files to .DDT format using
the correct DDT Format and Mip-map settings, and then copy them to the default
Age of Mythology\textures folder.

11.7 Adding The Building's In-Game Text.

Earlier when we created the proto unit definition for the House of Elrond we made reference
to four (4) in-game texts:

<displaynameid>60006</displaynameid >
<rollovertextid>60007 </rollovertextid>
<rollovercounterwithid>60008</rollovercounterwithid>
<rolloverupgradeatid>60009</rolloverupgradeatid>

To add these we again use Vachu's AOM Game Text Editor as described in Chapter 7.
We need to make the following new text entries
1) Displaynameid — this is just a plain text entry.

id = 160006,
text = House of Elrond.

2) Rollovertextid —another plain text entry.

id = 160007,
text = The Last Homely House of Elrond at Rivendell

3) Rollovercounterwithid — against buildings you usually recommend siege weapons,
so we need a link to this topic.

id = 60006,
text = <link=\"topic:Siege Weapons\">siege weapons</link>.

4) Rolloverupgradeatid — General building upgrades (increased hitpoints and crush
armor) such as Masons apply improvement to buildings with a unit type
LogicalTypeBuildingNotTitanGate (See the proto unit definition we made earlier). These
upgrades are initiated at the Town Center in default AoM/AOMTT.

id = 160007,

Page 72

text = <link=\"proto:Settlement Level 1\">Town Center</link>,

5) Once you have made the changes click File and Save in the Text Editor. This will
create a new language.dll file in your default Age of Mythology folder. If you are
using AoMTT you will need to rename this file to xpacklanguage.dil.

11.8 Adding the Buildings History

The final step in creating our building mod is to create a history file for the unit. We do this
in the same way we created our character history in Chapter 8, by creating a file in our AoM
Mods\Mod Files\history folder call House of Elrond.txt. The contents of this file follow
the same format as we used in the text entries — they can be freeform text or links to topics
or proto descriptions. For the time being, just Copy the following Text and Paste it into your
House of Elrond.txt file. Then save the file and copy it into the history2\units folder in

your default Age of Mythology folder.

House of Elrond or the Last Homely House was home to Elrond, his sons Elladan and
Elrohir, and daughter Arwen, located in the valley of Rivendell.

11.9 Check the New Building

Before we check out our new building, let us just do a quick check:

1) Our new PROTOX.XML or PROTO.XML file has been successfully converted
to .XMB format and the new PROTO(X).XMB file has been copied into the \data
folder in the default Age of Mythology folder.

2) Our new anim file - house of elrond_anim.txt — has been copied to the \anim
folder in the default Age of Mythology folder.

3) If we created new textures for our building the textures for have been successfully
converted to .DDT format and the .DDT files have been copied to the \textures
folder in the default Age of Mythology folder.

4) If you created new icon textures (great initiative!), that these have been successfully
converted to .DDT format and the .DDT files have been copied to the
\textures\icons folder in the default Age of Mythology folder.

5) Our new in-game text has been added and saved to create a new language.dll file
in the default Age of Mythology folder, and if we are using AoMTT this file has been
renamed xpacklanguage.dll.

6) Our new history file house of elrond.txt has been created and copied into the
history\units folder (AoM) or history2\units folder (AoMTT) in the default Age of
Mythology folder.

Once each of these files is correctly installed in the default Age of Mythology folder you are
ready to test the new building.

Page 73

1)

2)

3)

4)

Log into AoM(TT) and go into the Editor. Select Place Unit and the House of Elrond
character should be on the list and on selecting this character you should be able to
place it.

If not

If House of Elrond is not in the list of available units, the game is not picking up the
new PROTO(X) file and you should recheck that you placed it in the correct folder. It
should be in the AGE OF MYTHOLOGY\DATA folder.

If the characters are there, but their names are proceeded by three asterisks (e.g.
*** House of Elrond), the game is not picking up the xpacklanguage.dll file. It
should be in the default Age of Mythology folder (e.g. not in a sub-folder).

If the building's name is present but the unit is blank the game is either not picking
up the anim file or the anim file cannot find the relevant model. In case of the
former, the anim file is probably in the wrong place (check that they are in your Age
of Mythology\anim directory). In the latter, it may be that the anim is calling a
model that you do not have installed. If so, check that you did not accidentally
change the name of the original visual definitions).

If you created new textures, but looks like the existing unit, then the game is not
picking up the new texture files. Check that they are in the AGE OF MYTHOLOGY)\
TEXTURES directory.

Unless you were just missing a texture you will need to exit AoM(TT) fix the problem
and restart.

Now click on the Scenario Menu and select Scenario Data and then change the
Scenario settings to not use Victory Conditions (there should be no x next to it).
Then Play Test the Scenario.

If you created a new icon, when you select the House of Elrond, this icon should be
displayed in the bottom center of the screen. If it is not there or is garbled then
either the icon is not in the Age of Mythology \textures\icons folder or when it
was converted to .DDT format the incorrect format or mipmap levels were set.

a) Check that the file is in the right place (if not copy it into the correct folder).

b) If it is there, recheck your two icon bitmaps and make sure they are 32x32 pixels
and 64x64 pixels.

c) Convert your bitmaps again using the instructions at the end of Chapter 6.

Note that Texture file are loaded dynamically so you do not need to restart the game.

When you place your mouse over the House of Elrond or its icon the rollovertext
should be displayed in the bottom left hand corner. If not check that the changes
you made for text id 60007 are OK. If you did not get "*** before House of Elrond
in the unit placement the language file is being picked up OK. You will need to
restart the game to pick up any changes.

Page 74

5) Double-click on the House of Elrond Icon and this will bring up the in-game help. In
the middle section of the help screen will be the other rollover texts you created,
click on the hot links to check that they work. If they are not there, recheck the text
entries (ids 60008-9) making sure you check that the text id and the syntax of the
link statements is correct. You will need to restart the game to pick up any changes.

6) The bottom of the screen should display the text from the history file. If not make
sure that the house of elrond.txt file is in the correct folder (\history for AoM and
\history2 for AOMTT). These files are dynamically loaded so you do not need to
restart.

Congratulations you have just created a new building!

At this stage, in actual game play, the building will not be able to create Aragorn and the
Villager Norse will not be able to build the House of Elrond, but we have checked that from
a placement perspective that the mod has worked. To use the characters in our games, we
need to enable these protounits. To do this, we must make changes to the TECHTREE(X) to
enable these protounits.

Page 75

12. Enabling Proto Units

To use our proto units we need to modify the default TECHTREE(X) file to enable these
units for game play.

In Chapter 12, we will be looking at Technologies in more detail, however for now we are
simply interested in the changes we need to make to support our modifications.

12.1 Converting the TECHTREE(X) File

The first thing we need to do is to convert the TECHTREE(X).XMB file to a .XML format that
we can edit.

1)

2)

3)

4)

Launch Ykkrosh's AOM Data File Converter by double clicking the relevant icon
in your AoM Mods folder, and click the Direct file conversion button.

Data File Converter 2x

Direct file conversion | Bulk conwversion | Acvanced options |

Set input data file | |

Folder to extract datairta | | |

Read data file |

Set autput data file I | |

Folder 1o read data from I I |

inrite data file I !

e

You will then by asked to Select data file for input. Go to your Source
Files\data folder and locate the TECHTREEX.XMB file (AoMTT) or
TECHTREE.XMB file (AoM) and click Open.

A pop-up window will inform you that it is Converting to XML — select an output
file in the following window. Press the OK button, and then press the Save
button on the following window. This will save the file to the default file name —
TECHTREE(X).XML. The conversion will start and a pop up window will advise
Conversion Finished when complete. Press OK and close (XI) the AOM Data
File Converter.

Copy this file from your AoM Mods\Source Files\data folder to your AoM

Mods\Mod Files\data folder. You can retain the version in Source Files as an
original.

Page 76

You now have a file TECHTREE(X).XML that can be edited using Notepad or any
other .XML editor.

12.2 Enabling New ProtoUnits

To enable our new units we need to understand the technology structure that determines
when our characters are to be enabled. This will be discussed in detail in Chapter 12, for
now we will focus on two parameters we set in our proto unit definitions:

<allowedage>1</allowedage>
<allowedculture>Norse</allowedculture>

These indicate that we want these protounits to be available to the Norse Culture in Age 1.

Most unit enabling takes place in the Age Upgrade Technologies and for the Norse Culture,
one of three Age 1 technologies:

Age 1 Odin
Age 1 Thor
Age 1 Loki

If we open out TECHTREE(X).XML file with notepad and scroll through to the first of these
technologies we see the following:

<tech name="Age 1 Odin" type="Normal">
<dbid>316</dbid>
<displaynameid>11050</displaynameid >
<researchpoints>0.0000</researchpoints>
<status>AVAILABLE </status>
<icon>God Major Odin Icon 64</icon>
<rollovertextid>17906 </rollovertextid>
<flag>AgeUpgrade</flag>
<prereqs>
<civilization>
<civhame>Qdin</civhame>
</civilization>
</prereqs>
<effects>
<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Dwarf</target>
</effect>
<effect status="unobtainable" type="TechStatus">Age 1 Thor</effect>
<effect status="unobtainable" type="TechStatus">Age 1 Loki</effect>
<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Raven</target>
</effect>
<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">0x Cart</target>
</effect>
<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Villager Norse</target>
</effect>
<effect amount="1.00" relativity="Absolute" subtype="GrantedTech" tech="Great
Hunt" type="Data">
<target type="Player"></target>
</effect>

Page 77

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Ulfsark</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Fishing Ship Norse</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">House</target>

</effect>

<effect amount="1.10" relativity="BasePercent" subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Jarl</target>

</effect>

<effect amount="1.20" relativity="BasePercent" subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Huskarl</target>

</effect>

<effect amount="1.20" relativity="BasePercent" subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Ballista</target>

</effect>

<effect amount="1.20" relativity="BasePercent" subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Portable Ram</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Hero Norse</target>

</effect>

<effect action="Gather" amount="1.20" relativity="BasePercent"

subtype="WorkRate" type="Data" unittype="Huntable">

<target type="ProtoUnit">AbstractVillager</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Dryad</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Hesperides Tree</target>

</effect>

</effects>
</tech>

We will not explain all of this in detail yet, but the command we are interested has the
format

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">UnitName</target>
</effect>

It says that for the given protounit set the data for the enable parameter to one (in other
words, switch it on).

In the Age 1 Odin example, you can see that the technology enables 9 ProtoUnits: Raven,
Ox Cart, Villager Norse, Ulfsark, Fishing Ship Norse, House, Hero Norse, Dryad
and Hesperides Tree — all of the units that can be trained in Age 1 for the civilization Odin.

If you scroll down you will see the Age 1 Odin technology is followed by Age 1 Thor and
Age 1 Loki. These technologies are similar but, for example you may notice that Thor
does not enable ProtoUnit: Raven, but enables ProtoUnit: Dwarf and Dwarf Foundry,
Similarly Loki does not enable ProtoUnit: Raven, but provides a number of economic and
military improvements instead.

For the purpose of our modification we are going to limit the use of aragorn and the
house of elrond to Age 1 Loki. To do this scroll to the end of the definition for Age 1 Loki

Page 78

and after the effect definition for enabling the Hesperides Tree but before the <\effect>
statement insert the following two enabling statements.

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Hesperides Tree</target>

</effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Aragorn</target>

< /effect>

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">

<target type="ProtoUnit">House of Elrond</target>
</effect>
</effects>
</tech>

Save the TECHTREE(X).XML file in your AoM Mods\Mod Files\data folder and using
Ykkrosh's AOM Data File Converter convert this file into .XMB format (again in your
AoM Mods\Mod Files\data folder), and copy the new TECHTREEX.XMB file to the
default Age of Mythology\data folder.

12.3 Testing The Completed Mod

With the new TECHTREE(X).XMB file in the default Age of Mythology\data folder, we are
ready to test the completed mod.

It is assumed that you have successfully completed the testing outlined in
Chapter 9 and Chapter 10.9. If you have not done these tests, do so now as if
any problems occur in these tests the following will not work.

1) Launch AOM(TT) and Select the Single Player option. For Player 1 (you), select Loki
as your Age 1 Major God and start a Random Map game.

2) Select a Villager Norse and the second icon in the bottom left corner should have
the House of Elrond Icon. If the Icon is not available:

a) Recheck your PROTO(X).XML to make sure that the train statement in the
Villager Norse proto unit definition is correct. If so,

b) Check the TECHTREE(X).XML file to make sure that the enable definition
for the House of Elrond proto unit in the Age 1 Loki technology is correct.

As both of these files have been converted any error is most likely going to be
spelling rather than syntax. You will need to restart the game to pick
up new versions of either of these files.

c) If both of these files are correct, confirm that you have the correct versions of
the PROTO(X).XMB and TECHTREE(X).XMB files in your default Age of
Mythology\data directory — check the creation dates.

d) Finally, if it still does not work make sure you have used Loki as you major
god. If the earlier tests worked (refer Chapters 9 & 10.9) items a-d are the
only possible causes of failure. If you are still having problems redo the
earlier tests and take any remedial actions required.

Page 79

3)

4)

5)

Select the House of Elrond Icon and get the Villager to build a House of Elrond.
Once the building is complete, select the House of Elrond and in bottom left corner
should have the Aragorn Icon. If the Icon is not available:

a) Recheck your PROTO(X).XML to make sure that the train statement in the
House of Elrond proto unit definition is correct. If so,

b) Check the TECHTREE(X).XML file to make sure that the enable definition
for the Aragorn proto unit in the Age 1 Loki technology is correct.

As both of these files have been converted any error is most likely going to be
spelling rather than syntax. These are the only two possible causes of failure.
If you are still having problems redo the earlier tests and take any remedial
actions required.

Click on the Aragorn Icon and the unit should commence training, the Aragorn Icon
should change to a used format (black and red version of the icon) indicating no
further Aragorn's can be built..

Use one of your Ulfsarks to build a Longhouse. The (used) Aragorn Icon should
be on the top row in column 4. If not, the train statement in the Longhouse proto
unit definition is incorrect.

Congratulations, you have now created your first addition to AoM(TT).

Page 80

13. Making More New Units

The techniques we have covered in the first eleven Chapters of this Guide will enable to you
to create a wide selection of new characters for use in your single player games.

It is recommended that you consolidate these techniques with a few characters of your own
before moving on to the remaining Chapters.

In particular before embarking on technologies it helps to be proficient in creating anims and
there associated textures for multi-version characters (e.g. characters whose appearance
and powers change as new technologies are researched). It also helps to gain experience
with all the various actions (attack and economic) and a general knowledge of what works
and what does not and how the game actually hangs together.

The main thing to remember when creating new characters is to do a bit of research first.
Find a base character and have a look at what models it uses, any special effects associated
with it, the types of actions it performs and the various textures it uses and how these are
affected by technologies. You can waste a lot of time trying to get a character to something
that just isn't possible — but you can save a lot of time by figuring it out in your head before
you start changing files.

After a few attempts, the process of changing files will become routine. Just remember
syntax, syntax, syntax, spelling, spelling, spelling. I don't know how many hours I've
wasted trying to get something to work only to realize the logic was right T just left out a "}".

Once you get tired of the standard models, you can also expand into the area creating new
models; a number of articles exist on this subject (and if I get around to learning modeling I
will add a new chapter or two).

13.1 It's a Tough World Out There

Before you create that character you have always wanted to build and post it for peer group
approval, just remember there are some tough critics out there.

The majority of the standard ES characters would probably score a "1" if posted as new
mods — mainly due to low resolution textures. The screen prints included earlier in this
guide are probably 10-times the size of the in-game character with the default camera pitch,
so remember your work will be judged under a microscope.

Attention to detail in creating your textures is vital, being one pixel out in a texture can
result in an unwanted line on an in-game character. But do not let this deter you, seeing
your own characters in a game is a great buzz — of even better put your own face on a
character and join the battle.

Page 81

14. Technologies

In moving on to area of technologies, I have assumed that the reader has consolidated the
techniques covered in the first 12 Chapters.

In particular, when we talk about which file to change, I will assume that everyone can
distinguish between which files are source files (form our AoM Mods\Source Files folder),
which are mod files (form our AoM Mods\Mod Files folder), and which are production
files in our default Age of Mythology folder. I will also assume that the reader is familiar
with the sub-folders and will simply speak of files and folders in terms of source, mod and
production.

I will also assume that the reader has mastered the use of Ykkrosh's AOM Data File
Converter and Vachu's AOM Game Text Editor and that within the context of the
discussion will now what is involved to convert files between formats or to add text or links
to the in-game texts.

If you do not think your ready for this, but still want to proceed, please reread the
Disclaimer and proceed at your own risk.

14.1 What are Technologies?

Technologies in Age of Mythology are essentially a logical tree of potential player capabilities.
The units available to a player; any upgrades to unit capabilities (including those achieved
through age upgrades); God Power and Minor God options and availability; all these
variables are controlled through the use of technologies.

When a game is initialized only one Technology is active — the Age 1 Technology, and all
subsequent technologies are determined by prerequisites.

When we create a Technology Mod, we are changing the way the game behaves and this
obviously has wider implications than simply adding a new character.

The TECHTREE(X) file is simply a list of all the technologies available to the game. Each
technology has a standard definition format starting:

<tech name="Nameée" type=""Type">
GENERAL DETAILS SECTION
PREREQUISITES SECTION
EFFECTS SECTION
EXCLUDE SECTION

</tech>

The Technology Name is a label that will be used when referring to a technology and type
can either be "Normal" — a technology that is not a god power, or "Power" — a God Power
technology that needs to invoke the relevant god power script (see Chapter 14) when
activated.

Page 82

14.2 General Details

The general details section of the tech definition define the basic information about the
technology. The following example uses the general details from the Medium Archers
technology:

<dbid>73</dbid>
<displaynameid>11166</displaynameid>

<cost resourcetype="Wood">150.0000</cost>
<cost resourcetype="Gold">150.0000</cost>
<researchpoints>20.0000</researchpoints>
<status>OBTAINABLE</status>
<icon>improvement medium archer icon</icon>
<rollovertextid>10751</rollovertextid>
<buttonpos column="2" row="2"></buttonpos>

These various statements have the following meaning:

1)
2)

3)

4)

5)

The <dbid> is simply a unique (not necessarily sequential) identification number.

The <displaynameid> has the same role as the field of the same name in the
PROTO(X) file. Itis just a reference to the (xpack)language.dll file and identifies
the correct in-game text.

A second text messages can also be defined where prerequisites are used and this
text is displayed when a Player attempts to activate a technology before the
prerequisites are achieved. This uses the <preregsnotmetrollovertextid> statement,
which again is simply a reference to a text id in the (xpack)language.dll file.

The <cost resourcetype=""> field has the same effect as when used in the
PROTO(X) file. It defines the cost in terms of Food, Wood, Gold and Favor of the
technology. As with the PROTO(X) file combinations of resourcetype can be used.

The <researchpoints> field tells the game how long it takes to research the
technology, with the actual time being <researchpoints> divided by the
<buildingworkrate> (as defined in the initiating unit's proto unit definition); with
the resultant value being the number of seconds the research will take.

In this example, the <researchpoints> is set to zero as it is a technology that is
researched as a result of the civilization being selected when starting a game (hence
we want it to occur immediately); with other technologies you would set this to a
more appropriate amount (say between 15 and 30 seconds).

The <status> field defines the initial state (or availability) of the technology. The
<status> of a technology can be OBTAINABLE, AVAILABLE, ACTIVE or
PERSISTENT.

The different <status> options have the following meanings:
ACTIVE means that as soon as the TECHTREE(X) file is processed (e.g. during
game start up the technology (and its <effects>) will immediately take effect. The

reason that the Age 1 technology is the only technology that has this <status> is
that it is the only technology that has no prerequisites.

Page 83

6)

7)

8)

9)

AVAILABLE means that the technology is available for research. During game
start-up the only technologies that are AVAILABLE are those associated with the
Age 1 minor gods (Age 1 Zeus, Age 1 Hades, Age 1 Loki, etc). These
technologies need to be available at start-up as they are initiated by the choice of
civilization selected during the game initiation process. All other technologies are
made AVAILABLE as the result of successfully researching other technologies.

OBTAINABLE means that the technology can be made AVAILABLE, but only once
specific prerequisites are achieved. The majority of technologies in the game are
OBTAINABLE, based on a variety of prerequisites covering the player's culture,
civilization, availability of specific proto units, of research of other technologies.

PERSISTENT has a similar meaning to ACTIVE except that is a technology that
may need to be repeated throughout the game. The various "respawn" technologies
are examples of this. An ACTIVE technology may, for example increase the
hitpoints of a particular unit, and then cease to function. A PERSISTENT
technology may need to repeat an action multiple times during a game, whenever
the same situation arises. PERSISTENT technologies include an additional General
Detail parameter:

<flag>Volatile</flag>

This tells the game that the technology is repeatable and the prerequisites must be
rechecked, and technology reapplied each time the prerequisite occurs. For example
with the respawn technologies, each time a unit is killed, it must be recreated at the
appropriate building.

UNAVAILABLE means that the technology cannot be used. You would usually use
this status when you want the technology to be triggered by another technology.

The <icon> field defines the name of the icon file for this technology, i.e. the image
displayed in-game that initiates or represents this technology. Technology icons are
64x64 bitmaps converted into .DDT format; and are stored in the default Age of
Mythology\textures\icons folder. They are created in the same way as character
icons as described in Chapter 6.5.

The <rollovertextid> has the same function as in the earlier description of this
field for characters and buildings. It is a reference to a text entry in the
(xpack)language.dll file that gives a more detailed description of the technology
(displayed in the bottom lefthand corner of the game field) when the cursor rests
over the technology icon.

The <buttonpos> appears to define the location of the technology icon on the in-
game screen — however it seems to be overridden by the row, page, column
information in the proto unit definitions(??). I just tend to replicate whatever I used
in the PROTO(X).

The General Details can also include one or more <flags>. Five different flags are
used in the technology definitions:

Volatile — which as discussed tells the game to recheck for the stated prerequisite
on a periodic basis. This period is defied with the <delay> function. For example,

Page 84

10)

including the statement <delay>60.0000</delay> in the General Details section
will force the game to recheck a given prerequisite every 60 seconds.

AgeUpgrade — This tells the game that the technology is an Age Upgrade.

HideFromDetailHelp — This is used for behind the scenes technologies (tidying up
messy bits that you do not want players to be aware of).

AlwaysShowButton — which I think is just a safeguard that avoids other icons
being placed over the specified position for the relevant technology icon.

DynamicCost - this is only used with the Omniscience Technology and I assume
calls a specific piece of code that calculates the cost based on the current
populations.

The last parameter that is used in the General Details section is the delay function,
which uses the format:

<delay>0.0000</delay>

As it suggests, this function delays the execution of the technology effects for a set
time period of time after the prerequisites for that technology arise. The value is in
minutes, e.g. 1.0000 = 60 seconds.

14.3 Prerequisites

Prerequisites, define the conditions that must occur for the technology to become
AVAILABLE.

The prerequisite section is used in all technologies other that the initial Age 1 technology
and is simply a list of prerequisite statements positioned between the start <preregs>
and end </preregs> prerequisite commands.

<prereqgs>
PREREQUISITE 1
PREREQUISITE 2
PREREQUISITE 3

</prereq;$

Prerequisites statements come in a number of formats.

1)

<specificage> tells the game that the player must reach a certain age, e.qg.
Archaic Age, Classical Age, Heroic Age or Mythical Age before the technology
can become AVAILABLE. The statement uses the following syntax:

<specificage>Classical Age</specificage>
When using <specificage> as a prerequisite you define the earliest age in which

the technology is to be made AVAILABLE. It will remain AVAILABLE in all future
ages unless inhibited using another technology.

Page 85

2)

3)

4)

The <culture> prerequisite statement tells the game that the technology is limited
to specific cultures, and then lists one or more <culturename> statements that
tell the game which cultures the technology can be made AVAILABLE to, e.g.
Greek, Egyptian, Norse or Atlantean (AoMTT only). The <culture> statement
uses the following syntax:

<culture>
<culturename>Norse</culturename>
</culture>

This would make the technology AVAILABLE to the Norse Culture only.

If a technology is to be made AVAILABLE to a number of cultures, a separate
<culturename> prerequisite statement is required for each culture, e.g. to make a
technology available to both the Atlantean and Norse cultures you would use the
following prerequisite statement:

<culture>
<culturename>Atlantean</culturename>
<culturename>Norse</culturename>
</culture>

If the technology is to be made available to all cultures you do not need to include a
<culture> prerequisite statement.

The <civilization> prerequisite statement works in the same way as the
<culture> statement but where it is included it limited the availability of the
technology to the list of <civname> entries. The civilizations used are those
defined for the 12 Major Gods (9 in AoM) that are defined when selecting the Major
God during game start-up, e.g. Zeus, Poseidon, Hades, Ra, Isis, Set, Odin,
Thor, Loki, Gaia, Kronos and Oranos.

For example, to limit the availability of a technology to a single civilization (in this
case Loki) you would include the following <civilization> prerequisite statement.

<civilization>
<civhame>Loki</civname>
</civilization>

A number of technologies within AoM(TT) are set up as a sequence of technologies,
e.g. Medium Archers, Heavy Archers, Champion Archers. As well as having
<specificage> prerequisites these technologies require the earlier technology to
the ACTIVE before they can become AVAILABLE. This is achieved with the
techstatus statement. For example the Heavy Archers technology will include the
following prerequisite statement;

<techstatus status="Active">Medium Archers</techstatus>

This command has two parameters, status, which can be UNAVAILABLE,
OBTAINABLE, AVAILABLE, ACTIVE, PERSISTENT, and the Technology Name
you wish to check. It returns a true or false answer.

Page 86

5)

6)

If required you can multiple techstatus prerequisite, all will need to return a true
value if the technology is to become ACTIVE.

The next prerequisite type is used to check for the availability of a specific proto unit
type. For example, the standard age upgrades require either a Temple, an Armory
or a Market to be built first. To check for the presence of these units we use the
<typecount> prerequisite statement. This statement has the following structure:

<typecount count="1.00" operator="gte" state="noneState aliveState " unit="Aragorn">
</typecount>

The statement has four parameters: count, operator, state and unit.

count is simply the number you want to use in your comparison with the
actual typecount of a particular unit.

operator is the comparison you wish to make. This can be It (less than), gt
(greater than) or gte (greater than of equal to)

state refers to the unitstate of the proto unit you are counting. The value
"noneState aliveState" is format used in all standard AoM(TT) typecount
prerequisites and this just means units alive or in training/being built.

unit refers to the proto unit name you wish to count. This must be the same
as defined as the unit name in the PROTO(X) file.

So in the statement example above it is simply asking the logical argument
do I have one or more Aragorn units. The answer will be True of False.

The final concept we need to discuss in relation to prerequisites is implied
prerequisites. Whenever we set up a prerequisite that is dependent on the whether
the Player is a specific civilization; another technology is AVAILABLE; or a specific
unit is present, the prerequisites that apply to that aspect of the game also become
prerequisites for our new technology. It is therefore important to understand what
these prerequisites are so that the new technologies prerequisites can logically return
a True statement. If they cannot the technology will never be used.

For example, if we set our prerequisites to comprise <civnhame>Loki</civhame>
with a <typecount> for unit Hero Greek Jason of greater than or equal to 1. We
could never get a True condition; as Hero Greek Jason is not available to the Loki
civilization.

In summary we can define a range of prerequisites for each technology, and all defined
prerequisites must be met (TRUE) before a technology becomes AVAILABLE. A number of

specific prerequisite statements are used to check different aspects of the game, and a

number of different prerequisites can be defined for a technology.

Page 87

The following table gives a give reference to the correct one to use:

Required effect Prerequisite Used
I want to defer the technology to a later age <specificage>

I want to limit the technology to specific cultures <culture>

I want to limit the technology to specific civilizations <civilization>

I want the technology to be dependent on other technologies <techstatus ...

I want the technology to be dependent on the availability of a specific unit | <typecount ...

14.4 Effects

Having defined a technologies basic details and the prerequisites that will determine when it
becomes AVAILABLE, the next stage is to define what effects it will created when
activated.

The effects section of the technology definition provides a list of effects relevant to a
particular technology bound by the start and end effects command statements:

<effects>
EFFECT 1
EFFECT 2
EFFECT 3
EFFECT 4

</effects>

Effects are divided into five categories — type, amount, action, status, generator, and
culture. Each of these categories is described in subsequent sections, however a brief
description of the role of each category follows:

1) <effect type ...> statements are used to perform three in-game functions:
displaying in-game text <effect type "TextOutput">, playing sounds <effect
type "Sound">, and initiating Age Upgrade actions <effect type "SetAge">.
These are discussed in Section 13.4.1.

2) <effect amount ...> statements are used to modify the values defined in the body
of the various proto unit definitions in the PROTO(X) file. For example hitpoints,
armor levels, carry capacity, speed, los, unit availability, etc. These are discussed in
Section 13.4.2.

3) <effect action ...> statements are used to modify the values defined in the
actions section of the various proto unit definitions in the PROTO(X) file. For
example attack range, attack damage, gathering rates, turning on and off actions,
etc. These are discussed in Section 13.4.3.

4) <effect status ..> statements are used to change the status of other technologies.
These are discussed in Section 13.4.4.

Page 88

5) <effect generator ..> statements are used when we want the technology to
initiate an in game action — such as generating the start-up units for a Player. These
are discussed in Section 13.4.5.

6) <effect culture ..> statements are used when we want to change the names of
characters for a particular player as a result of an upgrade. For example changing
the in-game name of a Hippikon to a Medium Hippikon. These is discussed in
Section 13.4.6.

So in a typical <effects> section we would do some or all of the following:

a) Trigger the display of a text message announcing the start of the
technologies research.

b) Alter the amounts from the protounit definition, making units available and
improving the strength and speed of others.

C) Alter the parameters used in a units actions to make them stronger or more
efficient.

d) Activate, make obtainable or turn off other technologies.

e) Automatically create new units.

f) Change the names of the units affected by the new technologies.

g) Trigger the display of a text message announcing the end of the technology's

research and play a sound file to attract the Players attention to the text
message.

14.4.1 Type Effects

In defining our technologies there are three statement formats we can use to trigger events
in the game — TextOutput, Sound and SetAge.

The "TextOutput" effect is used whenever we want to display a message during game
play, and it uses the following format:

<effect type="TextOutput">textid</effect>

It is simply a reference to the id of a text entry defined in the (xpack)language.dll file. The
text entries themselves, are set up as described in Chapter 7.

Normally, we use a "TextOutput" at the start and end of the <effects> section to inform
the Player on the status of the research. If we want the message to be displayed to all
players we add the all="true" parameter to the statement.

<effect all="true" type="TextOutput">textid</effect>

Page 89

The "Sound" effect is used to initiate one of the sound files stored in the \sounds folder
and is usually used to announce the completion of a technology's research or an age
upgrade, and uses the following format:

<effect type="Sound">researchcompletel.wav</effect>

Age upgrades use the sound file AgeAdvance. If you want to add your own sound files just
change researchcompletel.wav to the name of the new sound file.

The "SetAge" effect tells the game to initiate any other actions associate with an Age
Upgrade — for age based technologies, textures, etc. It uses the format:

<effect type="SetAge">Age</effect>
Where Age will be either Classical Age, Heroic Age, or Mythic Age.

As the name suggests it is only used for technologies involving age upgrades as discussed in
Chapter 16.

14.4.2 Amount Effects

Amount effects (along with action effects) are main type of effect used in technologies.
Most of our technologies will improve certain aspects of a unit's performance and we set the
new values for this increased or reduced performance using the <effect amount ...>
definition.

The first amount we will want to effect is the ENABLE value of our protounits. In AoM(TT)
no units are enabled until a technology enables them. So for example, in the Age 1
technology we see the following statement that ENABLESs the proto unit Settlement Level
1 (the Town Center).

<effect amount="1.00" relativity="Absolute" subtype="Enable" type="Data">
<target type="ProtoUnit">Settlement Level 1</target>
</effect>

We used this statement in Chapter 12 to enable our Aragorn and House of Elrond units in
the technology Age 1 Loki.

There are a wide range of formats for <effect amount> statements, however three standard
parameters are used — amount, relativity and target type.

Relativity tells the game how the amount is to be applied and can be one of four options-
Absolute, Assign, Percent, BasePercent:

a) Absolute means that the value in the amount field is to be added to the existing
value for the field in question— in case of enable this is zero;

b) Assign means that the value in the amount field is to replace whatever value was
currently stored in the nominated field;

Page 90

d)

Percent means that the current value of the field is to be varied in percentage terms
by the value in amount field; and

BasePercent means that the current value of the field is to be varied in percentage
terms of its original value (i.e. the one originally defined in the PROTO(X) file. For
example, this option avoids the potential compounding effect that could occur using
multiple armor upgrades.

The amount field will therefore be a positive or negative integer — where relativity is
ABSOLUTE of ASSIGN; or a decimal percent (e.g. 1.0000 = 100%) where relativity is
PERCENT or BASEPERCENT.

The target type is the name of the proto unit as defined in the PROTO(X) file.

Once you get used to tech modding you will find translating an effect becomes second
nature, so we will not explore all of the available options, rather we will look at the main
formats.

1)

Upgrading Basic Attributes

The basic attributes of a unit (its hitpoints, speed, line of sight and trainpoints, etc.)
are separate subtypes within the game and use similarly structured <effects>. The
standard statement to increase a unit's hitpoints is:

<effect amount="1.10" relativity="BasePercent" subtype="Hitpoints" type="Data">
<target type="ProtoUnit">unitname< [target>
</effect>

This tells the game to increase the nominated ProtoUnits Hitpoints by a value
equal to 10% of its original hitpoints. If we set the original hitpoints to 300, this
command would add 10% of this amount (e.g. 30 hitpoints) and our in-game
character would now have 330 hitpoints available. Note, to cut down on effects,
unitname can be a single proto unit or a unittype, e.g. if we used HumanSoldier as
our unitname all protounits of this unittype would benefit from the improvement.

For line of sight ...

<effect amount="2.00" relativity="Absolute" subtype="LOS" type="Data">
<target type="ProtoUnit">unitname< [target>
</effect>

(add 2 to the current value). For speed ...

<effect amount="1.10" relativity="BasePercent" subtype="MaximumVelocity" type="Data">
<target type="ProtoUnit">Men of Rohan</target>
</effect>

(add 10% of the original speed to the current value). For trainpoints

<effect amount="0.80" relativity="Percent" subtype="TrainPoints" type="Data">
<target type="ProtoUnit">Men of Gondor</target>
</effect>

(reduce the trainpoints to 80% of the current value).

Page 91

2)

3)

In these basic attributes we have an amount, a relativity, a subtype and a protounit.
Other basic attributes include TributePenalty, AllowedAge, BuildLimit,
MaxContained, RechargeTime, PopulationCapAddition, LifeSpan, and
NumberProjectiles.

The easiest way to remember when to use the basic attribute effect format is if the
PROTO(X) definition is in the format <attribute>value</attribute> you use the
basic attribute effect format where subtype="attribute".

The difference that arises with other amount attributes discussed below, is that the
subtype may have subtypes of its own, and therefore requires additional parameters.

Increasing Armor Strength

When increasing armor strength we need to remember two things: 1) that our units
have three different types of resistance — hack, pierce and crush, and 2) AoM thinks
in terms of armor vulnerability, so we are not increasing the armor's strength but
reducing its vulnerability. The basic command format is:

<effect amount="-0.10" damagetype="Pierce" relativity="Percent" subtype="ArmorVulnerability"
type="Data">
<target type="ProtoUnit">unitname< [target>

</effect>

In this example, we need to include a damagetype parameter to tell the game
which component of ArmorVulnerability we are interested in. You will also notice
that our amount is negative. If the proto unit had Pierce Armor of 35%, then the
effect of this command would be to increase this by 6.5% - e.qg. its original armor
vulnerability is 65% and we are reducing this by 10%. The reason for doing it this
way, is that if you stick to a number <1.0000 (100%) and reduce vulnerability rather
than increase resistance you can never get >100% resistance (I assume the game
would not handle this very well, as an attack would increase hitpoints).

To reduce a unit or unit types vulnerability to other attacks we would include similar
commands for damagetype="Hack" and damagetype="Crush". In the standard AoM
technologies each damagetype is upgraded with a separate series of technologies,
but you can mix and match as you choose.

Increasing Carrying Capacity

When increasing a unit's carrying capacity we need to specify which resource they
will be able to carry more of, for example:

<effect amount="2.00" relativity="BasePercent" resource="Food" subtype="CarryCapacity"
type="Data">
<target type="ProtoUnit">AbstractVillager</target>

</effect>

This increases the unittype AbstractVillager's food carrying capacity to 200% of the
initial value. If they could initially carry 20 units of food before needing to deposit it,
they can now carry 40 units. We would use a similar format for resource="Wood"
and resource = "Gold".

Page 92

4) Changing a Units Cost

To change the cost of a unit we need to use separate effect statements for each
resource type cost we want to change, for example:

<effect amount="0.80" relativity="Percent" resource="Wood" subtype="Cost" type="Data">
<target type="ProtoUnit">unitname </target>
</effect>

This effect reduces the wood cost of the unit to 80% of its current value. We use
the same format for resource="Gold", resource="Food", and resource="Favor".

Similar amount effects can be used to manage ResourceTrickleRate, and BuyFactor,
SellFactor values at markets. If you search your TECHTREE(X) file for these terms
you can see how they work.

14.4.3 Action Effects

The second main area where we apply our new technologies is to the actions the unit
performs. If you remember our earlier discussion on actions in Chapter 3, there are a range
of actions a unit can perform and each of these action has a range of parameters that effect
how they perform. The <effect action ..> commands allow us to control these variables
through our technologies.

To start with let us look at a number of effects associated with a RangedAttack. These
effects could be used with a ranged unit or a BuildingThatShoots. They all effect different
attributes (or subtypes) of action="RangedAttack".

<effect action="RangedAttack" amount="1.00" relativity="Absolute" subtype="ActionEnable"
type="Data">
<target type="ProtoUnit"> unitname</target>
</effect>

<effect action="RangedAttack" amount="1.15" damagetype="Pierce" relativity="BasePercent"
subtype="Damage" type="Data">
<target type="ProtoUnit">unitname< [target>
</effect>

<effect action="RangedAttack" amount="6.00" relativity="Absolute" subtype="DamageBonus"
type="Data" unittype="unittype'>
<target type="ProtoUnit"> unitname</target>
</effect>

<effect action="RangedAttack" amount="2.00" relativity="Absolute" subtype="MaximumRange"
type="Data">
<target type="ProtoUnit"> unitname< [target>
</effect>

<effect action="RangedAttack" amount="10.00" relativity="Assign" subtype="TrackRating"
type="Data">
<target type="ProtoUnit">unitname </target>
</effect>

The first effect ENABLESs the attack, this is common for buildings that cannot use their

ranged attack until certain technologies are development, but it could be applied to other
characters if required.

Page 93

The next effect modifies the DAMAGE caused by the unit (by 15% of its initial value) and
includes the damagetype (Pierce, Hack Crush), amount and basis for applying that amount.

The third effect modifies the DamageBonus (adding 6 to the current value). Because we
can define multiple DamageBonus values in our PROTO(X) definition we need to specify
which one we mean using the unittype parameter.

Similarly the fourth effect changes the MaximumRange value (plus 2.0) and the last the
TrackingRate value (sets the current value to 10.0). If you look at a RangedAttack
action definition in your PROTO(X) you will see that we are merely changing parameters
already defined. So for example, we can also change the MinimumRange, Accuracy,
AccuracyReductionFactor, AimBonus, SpreadFactor and so forth.

All of the different actions types used in the PROTO(X) file can be modified in this way by
specifying action="AreaAttack", "Autogather"”, "Boost", "BuckAttack", "Build", "Gather",
"HandAttack", "Heal", "Trade" and so forth; and defining the parameters that you want to
vary, and which unit or unittype you want these changes to apply to.

14.4.4 Status Effects

The <effect status ...> command is used to change the status of technologies. We need
this command as the logic of the game dictates that certain technologies preclude the future
use of other technologies. If for example, we select Loki as our Major God, Thor and Odin
should no longer be available so we use the effect commands:

<effect status="unobtainable" type="TechStatus">Age 1 Thor</effect>
<effect status="unobtainable" type="TechStatus">Age 1 Odin</effect>

Using these commands, these two technologies (originally defined as AVAILABLE) and any
other technologies that use these technologies as prerequisites become unobtainable. The
<exclude> command discussed below has a similar effect.

We can use this effect to change any given Technology any of the valid status values
(UNOBTAINABLE, OBTAINABLE, AVAILABLE, ACTIVE or PERSISTENT) and in doing so
micro-manage the range of technologies a Player has access to..

14.4.5 Generator Effects

The next effect we will look at is <effect generator ...>. This effect is used to force build
a unit and used the following syntax.

<effect generator="buildingname' mute="true" type="CreateUnit" unit="unittype'>
<pattern minradius="0.00" quantity="4.00" radius="0.00" speed="0.00" type="Leaving">
<offset x="-15.00" y="0.00" z="0.00"> </offset>
</pattern>
</effect>

The buildingname is the building protounit that the created units will appear to be created
from. This is just for the "visual effect" and the building itself does not actually have to be
able to create the wunittype you request. The quantity parameter determines the number of
the unittype that are created while the other parameters determine the speed, manner (type)
and offset (direction from the building) that the units will disperse. If you want your units to

Page 94

gather at a specific point just set the type parameter to "Leaving" and define the required x
and z offset coordinates, z= +North,-South; x=-East,+West. If you want your units to just
wander off set the type parameter to "Scatter" and the speed to a value greater than 0.00.

The generator effect is used in the Starting Units Cu/ture technologies, various Respawn

Technologies and to grant Myth Units at various stages during the game.

14.4.6 Culture Effects

The last area we will look at is changing unit names — not the protounit, just the in-game
text. We do this by simply telling the game to use a new text id in our (xpack)language.dll
file.

<effect culture="Greek" newname="textid" proto="unitname' type="SetName" > </effect>

Once all of the effects are defined we close the effects section with the
< /effects> statement.

14.5 Exclusions

The final section of the technology definition lists the <exclude> statements. The
<exclude> statement uses the following syntax:

<exclude> techname< [exclude>
It has the same effect as using the status effect to make a technology unobtainable e.g.
<effect status="unobtainable" type="TechStatus"> techname </effect>. You can include multiple
<exclude> statements in a technology.

Whether you use the exclude format (after the <effects> section) or the status format (in
the <effects> section) is a matter of choice.

Page 95

14.6 Creating a New Technology

The first technology we are going to create is an Age 4 Norse technology called Return of
the King, which will make Aragorn super-powerful. This technology will cost 500 units of
Food and 20 units of Favor. The following is the tech logic.

<tech name="Return of the King" type="Normal">
Our new technology's name, it is a normal technology not a god power.
<dbid>2500</dbid>

We need a unique database id. It does not need to be contiguous and starting with 2500
gives plenty of scope for future AoM(TT) expansions.

<displaynameid>60010</displaynameid>
Our reference to the relevant text entry (we will add all of these later).
<cost resourcetype="Food">500.0000</cost>

<cost resourcetype="Favor">20.0000</cost>
<researchpoints>30.0000</researchpoints>

These define the cost of the technology and how long it will take to research (30 seconds).
<status>OBTAINABLE</status>

This states that the technology is obtainable and it will become AVAILABLE once the
prerequisites are met.

<icon>improvement aragorn rotk icon</icon>

This is a reference to the icon that will appear in the game for this technology.
<rollovertextid>60011</rollovertextid>

Our reference to the relevant text entry (we will add all of these later).
<buttonpos column="0" row="2"></buttonpos>

Where we want to locate the technology button on the activating building (our House of
Elrond).

<prereqs>
<specificage>Mythic Age</specificage>
<culture>
<culturename>Norse</culturename>
</culture>

This technology will only have 2 prerequisites — it must be in Age 4, and the culture bust be
Norse.

</prereqs>
<effects>
<effect type="TextOutput">60012</effect>

This text entry will announce that the research has commenced.

Page 96

<effect amount="500.00" relativity="Absolute " subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
Grant Aragorn an additional 500 hitpoints.
<effect action="HandAttack" amount="20.00" damagetype="Pierce" relativity="Absolute"
subtype="Damage" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
Increase Aragorn's hand attack by 20 hitpoints.
<effect amount="-0.40" damagetype="Pierce" relativity="Percent"
subtype="ArmorVulnerability" type="Data">

<target type="ProtoUnit">Aragorn</target>
</effect>

Decrease Aragorn's Pierce armor vulnerability by 40%.
<effect amount="-0.40" damagetype="Hack" relativity="Percent"
subtype="ArmorVulnerability" type="Data">

<target type="ProtoUnit">Aragorn</target>
</effect>

Decrease Aragorn's Hack armor vulnerability by 40%.
<effect amount="10.00" relativity="Absolute" subtype="LOS" type="Data">
<target type="ProtoUnit">Aragorn</target>

</effect>

Increase Aragorn's Line of Sight by 10 units.

<effect amount="2.00" relativity="BasePercent" subtype="MaximumVelocity" type="Data">
<target type="ProtoUnit"> Aragorn</target>

</effect>

Double Aragorn's speed.
<effect action="Regenerate" amount="10.00" relativity="Absolute" subtype="WorkRate"
type="Data" unittype="All">
<target type="ProtoUnit">Aragorn </target>
</effect>
Increase Aragorn's regeneration speed by 10 hitpoints per second.
<effect culture="Norse " newname="60013" proto="Aragorn" type="SetName"></effect>
Change Aragorn's in-game name to King Ellesar.
<effect type="TextOutput">60014</effect>
Send an in-game message signaling the end of the research.
<effect type="Sound">researchcompletel.wav</effect>

Play the research complete sound file to announce its completion.

</effects>
</tech>

Page 97

The following is a copy of the above technology, Copy it and Paste it into you mod version
of the TECHTREE(X).XML between the last </tech> statement and the final </techtree>.

<tech name="Return of the King" type="Normal">
<dbid>2500</dbid>
<displaynameid>60010</displaynameid>
<cost resourcetype="Food">500.0000</cost>
<cost resourcetype="Favor">20.0000</cost>
<researchpoints>30.0000</researchpoints>
<status>OBTAINABLE</status>
<icon>improvement aragorn rotk icon</icon>
<rollovertextid>60011</rollovertextid>
<buttonpos column="0" row="2"></buttonpos>
<prereqs>
<specificage>Mythic Age</specificage>
<culture>
<culturename>Norse</culturename>
</culture>
</prereqs>
<effects>
<effect type="TextOutput">60012</effect>
<effect amount="500.00" relativity="Absolute " subtype="Hitpoints" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
<effect action="HandAttack" amount="20.00" damagetype="Pierce" relativity="Absolute"
subtype="Damage" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
<effect amount="-0.40" damagetype="Pierce" relativity="Percent"
subtype="ArmorVulnerability" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
<effect amount="-0.40" damagetype="Hack" relativity="Percent"
subtype="ArmorVulnerability" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
<effect amount="10.00" relativity="Absolute" subtype="L0OS" type="Data">
<target type="ProtoUnit">Aragorn</target>
</effect>
<effect amount="2.00" relativity="BasePercent" subtype="MaximumVelocity" type="Data">
<target type="ProtoUnit"> Aragorn</target>
</effect>
<effect action="Regenerate" amount="10.00" relativity="Absolute" subtype="WorkRate"
type="Data" unittype="All">
<target type="ProtoUnit">Aragorn </target>
</effect>
<effect culture="Norse " newname="60013" proto="Aragorn" type="SetName"> </effect>
<effect type="TextOutput">60014</effect>
<effect type="Sound">researchcompletel.wav</effect>
</effects>
</tech>

Now convert the file into .XMB format and place a copy of the new TECHTREE(X). XMB file
into your production \data folder.

While we have created the new technology, we need to integrate this into the game. This
involves:

Page 98

1) Making the technology available at the House of Elrond;
2) Adding the required in-game texts;

3) Creating a new icon for the Technology;

14.6.1 Making the Technology Accessible.

To make a technology available in game play it needs to be initiated either from a building,
a unit, automatically activated by another technology (using the status effect) or in the case
of relic technologies through the garrisoning of a relic unit (refer Chapter 15).

In this instance we want our technology to be made available at the House of Elrond. This
requires the insertion of a <tech> statement into the proto unit definition for the House of
Elrond. The syntax for this statement is:

<tech column="0" page="1" row="2">Return of the King</tech>

Open you mod version of the PROTO(X) file and insert this line after our <train> definition
for Aragorn. Save the file, convert it into .XMB format and place a copy of this new
PROTO(X).XMB file in you production \data folder.

14.6.2 Adding the In-Game Text

For our technology we need to add five new texts to our (xpack)language.dll file

id=60010 text=Return of the King

id=60011 text=Aragorn is unveiled as King Ellesar and with the reforged Anduril
leads the people of Middle Earth to victory

id=60012 text=Researching the Return of the King

id=60013 text=King Ellesar

id=60014 text=Aragorn is crowned King Ellesar

Use the in-game text editor to add these new texts, save and create a new language.dll file
and if using AoMTT rename this file to xpacklanguage.dll in your AoM production folder.

Create a file called return of the king.txt in your \history folder and use the text from
text id 60011 as some sample text. Save this file and copy it into your production \history
(AoM) or \history2 (AoMTT) folder.

14.6.3 Technology Icon

Using the instructions in Chapter 6.5, create a 64x64 pixel bitmap called
improvement aragorn rotk icon in your mod \texture folder and use
the following artwork to create the icon. Save the file and convert it to DDT
format Paletted 16-bit no alpha [2] and Mipmap levels = 1. When

Page 99

this is completed successfully place a copy of the new .DDT file in you production
\textures\icons folder.

14.7 Testing the Technology

To test the technology you can either play a game through to Age 4, or go into the editor
and using the trigger function create a trigger that uses a condition of CHAT CONTAINS
setting whatever text trigger you want and an effect of SetTechnologyStatus, scrolling down
to RETURN OF THE KING and setting its state to Active.

First thing, it should be in the editor list - if not the new technology is not being picked up.
Go over the last few pages and make sure every new file is where it is meant to be.

If the technology was in the list, the game has picked it up, so place an Aragorn unit and a
House of Elrond, and Play Test the Scenario (with no victory conditions).

Select the House of Elrond and click on its info icon. The improvement aragorn ROTK
icon should be visible on the screen as a technology that can be developed at this building.

Select Aragorn and he should have his default settings. Then Enter the chat trigger that will
activate the new technology — Aragorn's (sorry King Ellesar's) name and unit stats should
change — the most obvious change will be his line of sight increasing. Click on his icon to
check that all the changes took place. If not go back over you <effect> entries and make
sure that they are correct.

If all has gone well you have a working new
technology.

If you want to make the upgrade more visual, the
following is a texture you can use (it is the same
as used in the picture at the end of Chapter 5).
Just paste it over your existing aragorn texture
and save it under a new name. Then change the
aragorn_anim file to include a TechLogic
None/Return of the King statement in each
anim definition, and use the new texture in the
ReplaceTexture commands where the tech is
active.

14.8 Creating More Technologies

So the process for creating a technology involves:

1) Decide what you want a technology to do, which units it will effect and check to
make sure that the basic protounit is capable of receiving the enhancement either by
updating or turning on an INACTIVE capability you have already defined in your
proto unit definitions.

Page 100

2)

3)

4)

5)

6)

7)

Decide whether you want to modify an existing technology, or create a new
technology.

If modifying an existing technology, choose the appropriate technology and ensure
that its prerequisites are suitable for your requirements. If modifying a technology,
we do not want to change its prerequisites as this may make the technology
unavailable for its intended use.

If creating a new technology, think about what prerequisites you require and what
implied prerequisites this will entail, and determine what technologies (if any) you

may need to exclude if the technology is used. Set up the new technologies Basic,
Prerequisite and Exclusion sections.

Decide what effects you want the technology to perform, and decide of the
appropriate effect statement format. I find it useful to stick to a standard layout:

a) Display the Initial text message (tech starting);

b) Define or the Unit Enabling effects;

C) Set the new values for unit basic attributes (refer 14.4.2)
d) Set the new value for unit action attributes (refer 14.4.3)
e) Generate any new units (14.4.5)

f) Change the names (if required) of any upgraded units;
g) Display the Complete text message and appropriate sound file.

Save your changes and create the new TECHTREE(X).XMB file and copy this into
you production folder.

Make the necessary PROTO(X) changes to allocate the technology to the required
unit using a <tech> statement.

Make the required changes to your (xpack)language.dll file and create a new
history file and improvement icon.

Test the technology.

You can use technologies to upgrade your units, automatically gather resources for a player,
or create mythical creatures (or other units) as required. While this can make you all
powerful just remember that a unit with 250,000 hitpoints a 2,000 hitpoint attack, lightning
speed and almost infinite regeneration power, is not going to lead to very interesting games.

Also once you start experimenting with technologies it helps to create your own buildings
rather than adding technologies to existing buildings. Some existing buildings have a few
slots spare, but it will quickly get messy (and may effect standard AoM(TT) campaigns).
Start by creating a University (my favorite building from AoE) and think about the sort of
things that would be researched in the time of your home-grown heroes.

Page 101

15. Relics

Relics are simply technologies that are attached to a relic protounit and are made active
when they are garrisoned in a suitable building. In terms of defining them as technologies
they follow the same rules as other Normal technologies with the exception that they always
have a name starting with "Relic " and require the basic settings to include:

<tech name="Relic name" type="Normal">
<researchpoints>0.0000</researchpoints>
<status>UNOBTAINABLE < /status>

Once you have a relic technology you will need let the game know it is available.

To do this locate the RELICS(2).XMB in your source \mods folder and convert this
to .XML format. Open this file and you will see it is just a list of relic technology names
enclosed by <relicdata> and </relicdata> statements.

<relicdata>
<relic tech="Relic Ankh of Ra"></relic>
<relic tech="Relic Anvil of Hephaestus"></relic>
<relic tech="Relic Armor of Achilles"></relic>
<relic tech="Relic Arrows of Alfar"></relic>

<relic tech="Relic of Ancestors SPC" reserved=
<relic tech="Relic of Earthquake SPC" reserved=
</relicdata>

></relic>
"> < /relic>

Insert your relic using the syntax:

<relic tech="Relic My Relic Namée"></relic>

This will put the relic technology on the random selection list. The game allocates these to
the relics placed in the game (seemingly at random)

If you don't like the hit and miss nature of the allocation of Relic technologies you can get
rid of an existing relic entry, unless it includes the parameter reserved="" or you can assign
specific relic powers using the Scenario Editor.

Personally, I prefer not to delete or alter too much of the standard code and find that the

existing relics are fine — as long as you keep the standard unittypes, your new units will
benefit from existing relic improvements.

Page 102

16. Civilizations

Once you have mastered the art of creating new characters, buildings and technologies the
obvious challenge is to combine these into you own civilization.

The main problem with civilizations is (as far as I know) the no one has figured our how the
game defines the <culture> and <civilization> variables in the game, so until someone
does we need to trick the game into using our minor god age stream rather than use the
standard streams.

In understanding how this works, we need to think about what is actually happening during
the start up phase of the game.

1) When starting a Random Map game or creating our own Scenario we define the
Major God we want to use. Selecting this Major God defines the <culture> and
<civilization> variables.

2) When the game is started it loads the TECHTREE(X) file. The Age 1 technology is
already ACTIVE and is executed and the only other technologies that are
AVAILABLE are the Age 1 God technologies (Zeus, Odin, Ra, etc.). If you look at
the prerequisites of these technologies the Age 1 God technologies each have a
different <civilization> prerequisite statement, for example, Age 1 Loki has:

<civilization>
<civhame>Loki</civname>
</civilization>

3) The <civilization> variable determines our Age 1 God technology and this
determine future technology options.

4) The <culture> then determines the Starting Units for the game.

To initiate our own Age technology streams we need to borrow an Age 1 civilization and add
a prerequisite that the standard technologies will not meet, but that our technologies will.

To achieve this we need a unique proto unit that will be placed in either a single player
scenario that we create; or by a modified Random Map script during the game start-up
process (refer Chapter 19). This involves three changes to the TECHTREE(X) file.

1) The first has to ENABLE the unique proto unit as part of the Age 1 technology;

2) The second has to alter the standard prerequisites for the Age 1 God technology we
want to borrow to include a check for the absence of this unique proto unit;

3) The third has to alter the standard prerequisites for the Culture's default Starting
Units technology to include a check for the absence of this unique proto unit.

Page 103

To make these changes:

1) Modify existing Age 1 technology <dbid>64</dbid> (both AoM and AoMTT) to
enable the unique unit:

<effect type="Data" amount="1.00" subtype="Enable" relativity="Absolute">
<target type="ProtoUnit">Settlement Level 1</target>

</effect>
//==
// NEW CIVILZATION LOGIC
l/==
<effect type="Data" amount="1.00" subtype="Enable" relativity="Absolute">
<target type="ProtoUnit">unique unit</target>
</effect>
//==
<effect type="Data" amount="1.00" subtype="Enable" relativity="Absolute">
<target type="ProtoUnit">Wall Medium</target>
</effect>
</effects>
</tech>

This is just the standard enable effect we discussed in Chapter 14.4.2.

The game will now recognize our unique proto unit.

2) Modify the Age 1 God technology for the civilization you wish to borrow, for
example if we want to borrow Loki modify existing Age 1 Loki tech
<dbid>320</dbid> (AoM and AoMTT) to include as a pre-requisite that the
typecount for the unique unit must to be zero

<tech name="Age 1 Loki" type="Normal">
<dbid>320</dbid>

<prereqs>
<civilization>
<civname>Loki</civname>
</civilization>

l/===
// NEW CIVILZATION LOGIC
//===
<typecount unit="unique unit" count="1.00" state="noneState aliveState " operator="It">
</typecount>
l/===
</prereqs>

With this change we have not affected the original logic of the technology and we
can still use the Loki civilization (unchanged) as long as we do not have our unique
unit (for the particular player) on the map — e.g. we can play our new civilization
against Loki.

The reason for this is that we are not actually taking over the Loki technology stream,

we are just using the value of "Loki" in the <civilization> variable to initiate our
own technology stream.

Page 104

3) Modify the relevant Starting Units technology. If we are borrowing Loki we would
change the Starting Units Norse tech <dbid>420</bid> (AoM and AoMTT) to
include as a pre-requisite that the typecount for the unique unit must to be zero.

<tech name="Starting Units Norse" type="Normal">
<dbid>420</dbid>

<prereqs>
<culture>
<culturename>Norse</culturename>
</culture>
<typecount count="0.00" operator="gt" state="noneState aliveState "
unit="SettlementsThatTrainVillagers">
</typecount>

<typecount count="1.00" operator="It" state="noneState aliveState " unit="unique unit">
</typecount>

</prereqs>

This change simply means that any normal Norse startup that does not include our
unique proto unit will behave as normal.

Having made these changes, we need to create two new technologies that will start our
civilization technology stream — our own Age 1 God technology, and our own Starting
Units technology.

1) The new Age 1 God technology will use the same techniques we discussed in
Chapter 14. You can either create it from scratch of use The Age 1 Loki technology
as you starting point. The new technology will need the following basic attributes:

<tech name="Age 1 NewGodName" type="Normal">
<dbid>last dbid pus one</dbid>
<displaynameid>last text id plus 1</displaynameid>
<researchpoints>0.0000</researchpoints>
<status>AVAILABLE </status>
<icon>God Major NewGodName Icon 64</icon>
<rollovertextid> last text id plus 1</rollovertextid>
<flag>AgeUpgrade</flag>
<preregs>
<typecount count="1.00" operator="gte" state="noneState aliveState "
unit="unique unit"></typecount>
<civilization>
<civname>Loki</civname>
</civilization>
</prereqs>
<effects>
<effect status="unobtainable" type="TechStatus">Age 1 Thor</effect>
<effect status="unobtainable" type="TechStatus">Age 1 Odin</effect>
<effect status="unobtainable" type="TechStatus">Age 1 Loki</effect>
EFFECT 1 etc.
</effects>
</tech>

The basic details need to contain the new technology name, new dbid, text and icon
information and must include the <flag>AgeUpgrade</flag> statement, the prerequisites

Page 105

2)

section we must include a check for the existence of our unique proto unit; and the
effects section should make the other Norse Age 1 God technologies unobtainable
(you can use exclude statements after the <effects> section if preferred).

Otherwise the remainder of the effects statement will include the standard ENABLE
effects and any basic effects or action effects you want to include.

In the Age 1 God technology you do not bother with texts or sounds as the
technology is initiated before the Player sees the game screen. You also use a
Starting Units technology rather than generator statements (this may not be
mandatory, but I assume the ES guys did it this way because of some timing issues).

Generally, the initial attributes and actions you defined in the PROTO(X) file are the
ones you want in Age 1, so usually this file will just be a series of ENABLE effects.
Just make sure you ENABLE everything you require (units and buildings) and
remember that your unique proto unit along the generally available units (walls
and gates) have already been ENABLEd in the Age 1 technology.

Finally, you will also need to grant the relevant Age 1 God Power. This can be a
standard issue one or one of your own (refer Chapter 18). This effect uses the
following syntax.

<effect amount="3.00" relativity="Absolute" subtype="GrantedTech" tech="Spy "
type="Data">
<target type="Player"></target>
</effect>

This example grants three (3) uses of the Spy God Power

The starting units technology is just a list of generate effects that create the units
you want the Player to commence the game with. It use the following format:

<tech name="Starting Units MyGod" type="Normal">
<dbid>last dbid pus one</dbid>
<displaynameid>last text id plus 1</displaynameid>
<researchpoints>0.0000</researchpoints>
<status>OBTAINABLE</status>
<delay>0.5000</delay>
<flag>HideFromDetailHelp</flag>
<prereqs>
<typecount count="1.00" operator="gte" state="noneState aliveState

unit="unique unit"></typecount>

<civilization>
<civhame>Loki</civname>
</civilization>
</prereqs>
<effects>
VARIOUS GENERATOR EFFECTS
<effect type="TextOutput">last text id plus 1</effect>
</effects>
<exclude>Starting Units Norse</exclude>
<exclude>Starting Units Egyptian</exclude>
<exclude>Starting Units Greek</exclude>
<exclude>Starting Units Atlantean</exclude>
</tech>

Page 106

It has its own basic details, uses the same prerequisites as our Age 1 God
technology and excludes all the other Starting Unit technologies so that you cannot
accidentally trigger these and create unwanted units.

The generator effects follow the format discussed in Chapter 14.4.5.

Our subsequent Age technologies can now build on a unique prerequisite:

<techstatus status="Active">Age 1 NewGodName</techstatus>

or on the availability of any technology or unit that uses this technology as an implied
prerequisite and becomes a unique proto unit or technology for our new civilization.

In general the only difference between "civilization" technologies and normal technologies is:
a) They are typically where we grant God Powers; and

b) They are initiated via the Age Upgrade process using Minor Gods.

In the next Chapter we will discuss how we make the necessary changes to the Minor God

files to allow us to use these new Age technologies, followed in Chapter 18, by a discussion
on God Powers.

Page 107

17. Minor Gods

As discussed in the last Chapter, Minor Gods are just special technologies. They are
special because they require a choice to be made within the game.

The game used the <flag>AgeUpgrade</flag> statement and the <preregs> to determine
what Minor Gods (or Age Upgrade Technologies) are available to the Player.

All the Minor God file does is provide the relevant information to the Age Upgrade screen
so it can display the available choices.

Find the MINORGODS.XMB file in you source \data folder, Copy it to you mods \data folder
and then convert it to .XML format. Open the file with Notepad and you will see a list of 36
Minor Gods (dbid 0-35) or 27 (dbid 0-26) if using AoM:

<?xml version="1.0" encoding="UTF-8"?>

<minorgods>

<god dbid="0" nameid="17150" techname="Age 2 Athena" portrait="god minor portrait greek Athena"
position="2" age="2"></god>

<god dbid="1" nameid="17151" techname="Age 2 Ares" portrait="god minor portrait greek Ares"
position="1" age="2"></god>

<god dbid="2" nameid="19154" techname="Age 2 Hermes" portrait="god minor portrait greek
Hermes" position="3" age="2"></god>

<god dbid="3" nameid="17153" techname="Age 3 Dionysos" portrait="god minor portrait greek
Dionysus" position="3" age="3"></god>

<god dbid="33" nameid="22829" techname="Age 4 Helios" portrait="god minor portrait atlantis helios"
position="2" age="4"></god>

<god dbid="34" nameid="22830" techname="Age 4 Hekate" portrait="god minor portrait atlantis
hekate" position="1" age="4"></god>

<god dbid="35" nameid="22831" techname="Age 4 Atlas" portrait="god minor portrait atlantis atlas"
position="3" age="4"></god>
</minorgods>

For each culture (Greek, Egyptian, Norse, Altantean) we have 3 Minor gods for 3 Ages.
All the <god ..> statements do is provide:

1) A unique dbid;

2) A reference to the in-game text message in our (xpack)language.dll file;

3) The name of the associated technology (in the TECHTREE(X) file);

4) A reference to the portrait icon for the Minor God (a bigger icon for use on the Age
Upgrade screen);

5) A position (1-3) for each culture/age which determines the order it is displayed; and

6) The Age it applies to, which the AgeUpgrade function uses to initiate the necessary
generic age upgrade technologies and other functions.

Page 108

Creating a new Minor God simply involves inserting a new entry, for example

<god dbid="36" nameid="nnnnn" techname="Age 1 NewGodName " portrait="god minor portrait
newgodname" position="1" age="1"></god>

saving the file and converting it to .XMB format. This file then goes into your production
\data folder.

Next create the new entries for the in-game text as described in Chapter 7, all this needs to
be is the name of the Minor God.

We also need to create a new portrait icon for this Minor God. This icon is a larger version
of the icons we have previously created and only part of the area is used so that the image
fits into the portrait area available on the Age Upgrade screen (as shown in the example).

To create a portrait icon just copy one of the god
minor portrait name texture files from your
source \textures folder to your mods \textures
folder and convert it to a bitmap, remembering the
DDT format and mip-map levels.

Replace the picture within the frame with your own
Minor God portrait, save the file and convert it
back to .DDT format.

Copy this file into the production \textures folder
(not it \icons sub-folder).

When you enter the Age Upgrade process you will be presented with one or two Minor God
Portraits and selecting one will initiate the appropriate Age Technology.

Normally you would provide two Minor God options at each upgrade but this is not
mandatory (for example my LOTR Shire civilization used two options at each level but the
Mordor civilization only uses one).

Once you are comfortable with the principles discussed in this and the previous chapter, you
are ready to create your own civilization. To this you must create:

1) An Age 1 God technology (your pseudo Major God) and use prerequisites to enable
you to access this technology using an existing civilization.

2) A Starting Units technology to create the initial units.

3) One or two AgeUpgrade technologies for each subsequent age (2 ,3 and 4) - your
Minor God technologies.

4) An updated MINORGODS.XMB file with each of the new Minor Gods defined.

Page 109

5) The technology and portrait icons; and in-game text dictated by the above changes.

Once these changes are installed in your production folder, your civilization will be initiated
whenever your unique proto unit is present. In the first instance this will only be in
situations when you place it yourself using the Scenario Editor. In Chapter 19, we will
discuss how this unique proto unit can be placed automatically.

Page 110

18. God Powers

Having created some new Minor Gods, you may want to give them God Powers of their own.
This is not mandatory and to grant any existing God Power as part of your AgeUpgrade
technologies, however adding new God Powers is a nice touch, even if you just rename and
existing God Power to give it a name more in tune with your new civilization. For example
the Palantir Stone technology in my LOTR civilization is just the standard Spy God Power.

You may also want to change God Powers so that you can get the effect of an existing
technology using one of your new proto units. Once you understand the workings of God
Powers you may also want to mix and match the functions available to create new effects.

God Powers are a special form of technology that use external command files instead of
<effect> statements. These command files have access to a wide range of functions not
available to standard technologies. When creating a God Power you need to define it as a
technology of type="Power", as shown in the following example:

<tech name="Prosperity" type="Power">
<dbid>499</dbid>
<displaynameid>11190</displaynameid>
<researchpoints>0.1000</researchpoints>
<status>OBTAINABLE</status>
<icon>god power prosperity icon</icon>
<rollovertextid>10765</rollovertextid>
<prereqs>

<techstatus status="Active">Age 1 Isis</techstatus>

</prereqs>

</tech>

and then create a god power script with the same name as used in you technology. When
the God Power technology is activated this script will be run.

Let us look at a simple God Power script as used for the "Spy" God Power

<?xml version="1.0" encoding="UTF-8"?>

<power name="Spy" type="spy" techname="spy">
<activetime>-1</activetime>
<placement forceonmap="1" enemy="" matchtype="LogicalTypeValidSpyTarget">unit</placement>
<spyproto>spy eye</spyproto>
<soundset type="StartSound" listenertype="Ally">GodPowerStart</soundset>
<soundset type="StartSound" listenertype="IfOnScreenAlly">SpyBirth</soundset>
<soundset type="EndSound" listenertype="Ally">GodPowerEnd</soundset>
<minimapeventtime sendalertto="ally">10.0</minimapeventtime>
<messagealertplayerrelation>ally</messagealertplayerrelation>
<icon>god power spy icon</icon>
<usedicon>god power spy icon done</usedicon>

</power>

This script defines the name of the God Power, the type of God Power and the technology
name associated with the God Power (which is the same as you would use when creating
the relevant technology).

Of these parameters the type is a reference to the game function "spy" which gives you
visibility of the line of sight of the unit the God Power is cast on. The name parameter is

Page 111

used by the AI unit and game logic when casting the god power and cannot contain any
spaces. It gets setup as a game variable called cPowerName (i.e. cPowerSpy in this
instance). The techname parameter is the name of the technology as defined in the
TECHTREE(X) file. In the Palantir Stone technology used for Age 1 Shire in the LOTR Civ
Pack I made, the only changes were name=PalantirStone and techname=Palantir Stone.

The second line has the statement <activetime>-1</activetime>. This determines how long the
God Power will remain active. In this case it is -1 (which means indefinitely — until the unit
is destroyed). It could however be a positive number that would be interpreted as the
number of seconds the God Power will remain active. If it was <activetime>60.0</activetime>
the "Spy" God Power would remain active for 1 minute.

The third line uses the <placement ...> statement. This statement determines type of object
the God Power can be targeted on. In this case it can be used on any unit that has the
<unittype>LogicalTypeValidSpyTarget</unittype> defined in its proto unit definition. This unittype is
applied to most units but not buildings. However the matchtype could be a specific proto
unit (e.g. matchtype="Aragorn") or a class of units (e.g. matchtype="Human Soldier"). The
forceonmap="1" parameter tells the game it can disregard any placement rules (e.g.
obstructionradius etc.) when casting the power (which in this case is attaching a spy
protounit to an existing object).

The fourth line <spyproto>spy eye</spyproto> is a reference to the proto unit that is used for
the Spy Power (the thing that hangs above the unit you cast the power on). This is the Spy
Eye protounit from the PROTO(X) file.

The next five lines:

<soundset type="StartSound" listenertype="Ally">GodPowerStart</soundset>
<soundset type="StartSound" listenertype="IfOnScreenAlly">SpyBirth</soundset>
<soundset type="EndSound" listenertype="Ally">GodPowerEnd</soundset>
<minimapeventtime sendalertto="ally">10.0</minimapeventtime>
<messagealertplayerrelation>ally</messagealertplayerrelation>

tell the game who to inform before and after the power is cast and how, e.g. sound alerts,
flares on player minmaps and text messages.

Finally we have some icon information for the unused and used (red and black version) of
the God Power Icon. Note that the used icon is automatically generated by the game from
the unused icon (so you only need to create one).

So when this power is selected the player will be able to select any unit in its line of sight of
<unittype>LogicalTypeValidSpyTarget</unittype>. The underlying "Spy" code performs the
equivalent of an anim connect Spy Eye attachpoint on the unit selected, the players
allies are notified of the event (we don't want the enemy to know for this GP) and the
attachment remains active until the unit is destroyed. If you note from the details is the
PROTO(X) this attachment simply provides a 27.0 LOS from the object it is attached to.

Page 112

18.1 Placement God Powers

The first common form of God Power is one that allows you to place an object. This is the
basic format for the Nidhogg, Sentinel, Serpents, Skeleton Power, and Vision God
Powers and in variants of the tempunit function that support additional unit creation
parameters: Ancestors, Dwarven Mine, Healing Springs, Lure and Plenty. These God
Powers use the following format (using the Nidhogg GP \god powers\create gold.xmb as an
example).

<?xml version="1.0" encoding="UTF-8"?>

<power name="Nidhogg" type="tempunit" techname="nidhogg" >

The Powers Name, type and techname. Some placements use specific types (see above)
but type="tempunit" is the base function.

<activetime>-1</activetime>

How long it will last (in minutes). The value -1 means until destroyed, however you can set
a number of minutes as done for the Lure placed in the Animal Attraction God Power.

<placement forceonmap="1" losprotounit="Nidhogg">all</placement>
<createunit quantity="1" radius="5.0" delay="0.0" norotate="">Nidhogg</createunit>

These next commands tell the game what protounit to create, how many and how to place
it. If you are only placing a single unit you do not need to worry about the radius or delay
in placement, but if for example your god power created an army you will want to increase
the radius so the game can place them over a wider area; or use multiple <create unit .. >
statements and stagger the creation using the delay parameter (which is in seconds). Look
at the Serpents or Ancestors God Powers for example of this approach.

<soundset type="StartSound" listenertype="AllExceptCaster">GodPowerStart</soundset>

We then alert all players we are casting our GP (but do not tell them where by setting the
minimapeventtime sendalert to none).

<icon>god power nidhogg icon</icon>
<usedicon>god power nidhogg icon done</usedicon>

These last two lines define our unused and used icons.

</power>

From this example, we can see the basic format of a Placement God Power:

<?xml version="1.0" encoding="UTF-8"?>

<power name="MyGodPower " type="tempunit" techname="My God Power">
<activetime>-1 for no limit, or n.nn minutes</activetime>
<placement forceonmap="1" losprotounit="proto unit name">full</placement>
<createunit quantity="num" radius="0.0" delay="0.0" norotate="">proto unit name</createunit>
<soundset type="StartSound" listenertype="AllExceptCaster">GodPowerStart</soundset>
<minimapeventtime sendalertto="none">0.0f</minimapeventtime>
<icon>god power My God Power icon</icon>
<usedicon>god power My God Power icon done</usedicon>
</power>

Page 113

When we activate the God Power it would allow us to click a valid placement are on the map
and then it would create the number and type of units defined.

We would this format to place new proto units (particularly super units later in a game).

18.2 Unit Swap God Powers

That next type of God Power is used to swap one proto unit to another.

Blessing of Zeus, the various Change Unit god powers, Citadel, Curse, Goatunheim,
Ragnorok, Seed of Gaia, Son of Osiris, Walking Berry Bushes and Walking Woods
God Powers.

As the name suggests these god powers swap proto unit for another.

These God Powers use the following general format:

<?xml version="1.0" encoding="UTF-8"?>

<power name="Goatunheim" type="swapunit" techname="goatunheim">
<activetime>0.6</activetime>
<radius>20.0</radius>
<soundset type="StartSound" listenertype="AllExceptCaster">GodPowerStart</soundset>
<soundset type="StartSound" listenertype="IfOnScreenAll">RagnarokBirth</soundset>
<placement forceonmap="1">skip</placement>
<powerplayerrelation>all</powerplayerrelation>
<overallchance>1.0</overallchance>
<global></global>
<abstracttype swapto="Goat">Military</abstracttype>
<abstracttype swapto="Goat">AbstractVillager</abstracttype>
<abstracttype swapto="Goat">Huntable</abstracttype>
<swapdelay>0.5</swapdelay>
<sfx>Ragnorok SFX</sfx>
<swapselfonly></swapselfonly>
<icon>Animal Goat icon 64</icon>
<usedicon>Animal Goat icon 64</usedicon>

</power>

If you remember, this God Power changes some units (types: Military, AbstractVillager and
Huntable) in the target area into protounit Goat. The power remains active for 36 seconds
<activetime>0.6</activetime> (units entering the area after the initial cast will also be affected,
and operates over a radius of 20 units <radius>20.0</radius> from the point the GP was cast.
It applies to all units (self, ally and enemy) <powerplayerrelation>all</powerplayerrelation> and has
a 100% conversion rate <overallchance>1.0</overallchance>.

From this example we can see the basic format of a swapunit God Power.

<?xml version="1.0" encoding="UTF-8"?>

<power name="MyGodPower" type="swapunit" techname="My God Power">
<activetime> n.n minutes</activetime>
<radius>num mins</radius>
<soundset type="StartSound" listenertype="AllExceptCaster">GodPowerStart</soundset>
<soundset type="StartSound" listenertype="IfOnScreenAll">RagnarokBirth</soundset>
<placement forceonmap="1">skip</placement>

Page 114

<powerplayerrelation>all, enemy or player</powerplayerrelation>
<overallchance>decimalised percent chance</overallchance>
<global></global>
<abstracttype swapto="To Proto Unit">From Proto Unit</abstracttype>
<swapdelay>num secs</swapdelay>
<sfx>SFX Proto Unit</sfx>
<swapselfonly></swapselfonly>
<icon>God Power icon 64</icon>
<usedicon>God Power icon 64 used</usedicon>

</power>

For a straight single unit swap we would set the activetime to 0.1, or we can keep it their for
longer if we want to create "upgrade zones" or "no go areas". We vary the size of the area
where we want swaps to take place by varying the radius parameter, and limit the effect of
the swap using the powerplayerrelation parameter to limit the power to player - our units
(for good things); the enemy (for bad things) or all units.

We can use the overallchance parameter to randomize the effect of the God Power, and
create swapdelays to lull enemies into a false sense of security (we do not want the first
enemy entering a no go zone to warn off the others by turning into a goat!).

Finally we can add some embellishment by using one of the many standard special effect
(sfx) protounits or creating our own.

The swapunit God Power is most useful when wanting to swap enemy player proto units, as
this cannot be performed with normal technologies, whereas with your own units, most
swaps can be achieved using latent PROTO(X) actions, special technologies and their
associated anim variations. You tend to use a swapunit on your own characters when these
attributes are so different that its is just easier to achieve them with a new proto unit.

The remaining 40-odd God Powers are unique in type and use functions specially suited the
particular effect they create. I do not intend to discuss all of these but to look at some
examples that are representative of a group of God Powers. Once you get the hang of a
few examples you should be able to make sense out of the others, and with a working
knowledge of the effect they actually have in-game it is not hard to interpret what each
script is doing.

18.3 Epic God Powers

I classify Epic God Powers as those that involve a sequence of events (a build up, main
attack, crescendo and die-down). They include Chicken Storm, Earthquake, Implode,
Lightning Storm, SPCLightning Storm, SPCmeteor, Tartarian Gate, Tornado,
Tornado xp05, Tremor and Volcano. In the game they slowly build up, cause major
damage and then dissipate.

To see how this type of God Power works we will look at the SPCMeteor God Power (see
next page). The first thing you will notice is that it seems a lot more complex than the God
Powers we have discussed to date.

It appears more complex because it is really a series of frames (build-up, main attack, wind

down), uses separate damage models for enemies and allies and requires a number of
randomizing parameters so that the effect of the God Power is not always the same.

Page 115

Without this randomization an experience player would soon learn to dodge bolts of
lightning and meteors as they would always land in the same relative positions.

So let us look at the God Power Script

<?xml version="1.0" encoding="UTF-8"?>

<power name="SPCMeteor" type="meteor" techname="SPCMeteor">

<builduptime>1.0</builduptime>

<activetime>5.0</activetime>

<unitaitype>SPCmeteor</unitaitype>

<radius>32.0</radius>

<placement forceonmap="1">full</placement>

<meteor>SPCmeteor</meteor>

<splashsfx>Meteor Impact Water</splashsfx>

<landsfx>Meteor Impact Ground</landsfx>

<firststrikesoundset>MeteorBigHit</firststrikesoundset>

<strikesoundset>MeteorSmallHit</strikesoundset>

<firstapproachsound>MeteorApproach</firstapproachsound>

<approachsound>MeteorWhoosh </approachsound>

<fasteststriketime>15.0</fasteststriketime>

<sloweststriketime>15.0</sloweststriketime>

<abstractattacktargettype>LogicalTypeValidMeteorTarget</abstractattacktargettype>

<gpdamagemodel>
<playerrelation>enemy</playerrelation>
<basedamagepercentunit>1.0</basedamagepercentunit>
<basedamagepercentvillager>1.0</basedamagepercentvillager>
<basedamagepercentbuilding>1.0</basedamagepercentbuilding>
<minhpdamageunit>100000</minhpdamageunit>
<minhpdamagevillager>100000</minhpdamagevillager>
<minhpdamagebuilding>100000</minhpdamagebuilding>
<maxhpdamageunit>10000000</maxhpdamageunit>
<maxhpdamagevillager>10000000</maxhpdamagevillager>
<maxhpdamagebuilding>10000000</maxhpdamagebuilding>

</gpdamagemodel>

<gpdamagemodel>
<playerrelation>ally</playerrelation>
<basedamagepercentunit>1.0</basedamagepercentunit>
<basedamagepercentvillager>1.0</basedamagepercentvillager>
<basedamagepercentbuilding>1.0</basedamagepercentbuilding>
<minhpdamageunit>100000</minhpdamageunit>
<minhpdamagevillager>100000</minhpdamagevillager>
<minhpdamagebuilding>100000</minhpdamagebuilding>
<maxhpdamageunit>10000000</maxhpdamageunit>
<maxhpdamagevillager>10000000</maxhpdamagevillager>
<maxhpdamagebuilding>10000000</maxhpdamagebuilding>

</gpdamagemodel>

<accuracy>1.00</accuracy>

<unitthrowchance>0.85</unitthrowchance>

<minthrowdistance>6.0</minthrowdistance>

<maxthrowdistance>10.0</maxthrowdistance>

<minthrowheight>1.0</minthrowheight>

<maxthrowheight>2.0</maxthrowheight>

<minthrowvelocity>10.0</minthrowvelocity>

<maxthrowvelocity>20.0</maxthrowvelocity >

<camerashake duration="0.50" strength="0.25"></camerashake>

<icon>god power meteor icon</icon>

<usedicon>god power meteor icon done</usedicon>

</power>

The script is easier to understand if we think of it in three chunks. The visual effect frames
and the timing and sequencing of the frames; the macro-level damage we want caused by

Page 116

the God Power (the <gpdamagemodel>) and micro-level damage response we want from
individual units.

So in the first part of the GP script, the information is concerned with timing; the proto unit,
sfx proto units, and sound files to use during the execution of the GP; the area impact and
frequency of individual projectiles. If you want to see how complex this can get look at
the Implode GP.

In the second part we set the macro level attack parameters and half the option to set them
differently for enemies and allies. We set the maximum unit level damage allowed - in this
100% damage (it is OK to kill them) and set the minimum and maximum range for total
hitpoint damage across the various unit types. These will be randomized by the specific GP
function so you get varying levels of damage with each cast of the GP.

The last section tells the game what to do with a unit if it gets hit. Again these parameters
just randomize the likelihood of the unit being thrown and if they are how high? how far?
how fast?.

The actual parameters will vary across different "epic" god powers but the same overall
structure applies. Just picture how the god power works during a game and the script
becomes easier to read.

18.4 Creating Your Own God Powers

Because you do not have access to the actual God Power code, only the script that calls it
using the underlying code to make your own God Powers is always going to be a bit of trial
and error.

My advice is to start with the more obvious stuff like tempunit and swapunit and then try
and play around with one of the epic God Powers to see the effect of changing the timings,
proto units, special effects and damage profiles.

There probably have not been too many God Power mods made, so there is a lot to learn
and hopeful scope for some very interesting and visual work.

Page 117

19. Random Maps

In discussing Random Maps, and in the next Chapter on AI, I do not intend to explain how
these work. The Random Map and Al Guides in the standard release and other good guides
available on-line have far more detail. My main focus is what needs to be done to these
areas to enable you to use your own civilizations and units.

From the point of view of Random Maps the issue is how we place our unique proto unit -
the one that we use to select our own Age 1 God technology into a random map so that we
can use this feature of the standard Single Player game using our civilization.

To do this we need to create our own version of each random map script and each random
map control file we want to use with our civilization.

For example if we want to use the acropolis random map we need to:
1) Copy acropolis.xs as myciv acropolis.xs
2) Copy acropolis.xml as myciv acropolis.xml

Both versions of the random map will be available on the Map Selection screen, but when
we have finished the new version will place our unique proto unit. In the example we

used earlier of "borrowing" Loki, when we use the old random map Loki will play as Loki,

when we use the new random map Loki will play as our new civilization.

Sorry if this sounds messy, but until we can work out how to define civilizations it is the only
way!

19.1 Enabling a Random Map for New Civilizations

When a random map is created as well as all the resources, trees, wild life, etc., it places a
starting settlement and a number of towers (in most cases) for each Player.

How you would need to modify the Random Map depends on whether your civilization
replaces one or both of these units or whether you use another unique proto unit.

In the two civilizations I have created (the Shire and Mordor), the unique proto unit I
used was a new town center (a Middle Earth Village for the Shire and a Tower of Isengard
for Mordor) that replaced the standard settlement level 1 protounit. I also created a new
type of tower for the Shire Civilization. Therefore, to use these civilizations these new proto
units must be placed instead of the standard ones.

If your civilization does not replace these, for example your unique unit could be a copy of a
lure proto unit simply called MyCivId, then you would only need to add this unit when
laying out.

To explain how this works we will use the acropolis random map. Once you have made the
changes once, they can usually be copied to other maps without any further change.

Page 118

First, let us look at what is involved when we have created our own town center and tower
proto units.

1)

2)

3)

Copy the two files as outlined above and open the myciv acropolis.xml file with
Notepad. It contains the following:

<?xml version = "1.0" encoding = "UTF-8"?>
<mapinfo details = "52258" imagepath = "ui\ui map acropolis 256x256" displayNameID="52259"
cannotReplace=""/>

This file contains two text references and an icon reference. All we need to change
here is the second text reference so we have the correct label on the map selection
screen. Add a new text to your (xpack)language.dll file using the next available
id and just enter text=MyCiv Acropolis and then save the file.

The next file we need to change is the myciv acropolis.xs file. Open this with
Notepad and scroll down to the line:

] R —— Define objects
// Close Objects

Immediately following this you will see the following definition of the "normal"
starting settlement.

int startingSettlementID=rmCreateObjectDef("starting settlement");
rmAddObjectDefItem(startingSettlementID, "Settlement Level 1", 1, 0.0);
rmAddObjectDefToClass(startingSettlementID, rmClassID("starting settlement"));
rmSetObjectDefMinDistance(startingSettlementID, 0.0);
rmSetObjectDefMaxDistance(startingSettlementID, 0.0);

Immediately after this definition we need to define our own starting settlement, just
take a copy of the existing definition and make the changes as follows:

int startingMyCivSettlementID=rmCreateObjectDef("Starting MyCiv Settlement");
rmAddObjectDefltem(startingMyCivSettlementID, "MyCiv Town Center", 1, 0.0);
rmAddObjectDefToClass(startingMyCivSettlementID, rmClassID("starting settlement"));
rmSetObjectDefMinDistance(startingMyCivSettlementID, 0.0);
rmSetObjectDefMaxDistance(startingMyCivSettlementID, 0.0);

We have created a new variable called startingMyCivSettlementID and defined it.
Now scroll down to the line headed:

// Place starting settlements.

and you will see the following, placement script:
rmPlaceObjectDefPerPlayer(startingSettlementID, true);

We need to change this to place our settlement when the cCivLoki condition is met.

for(i=1; <cNumberPlayers)

{
if(rmGetPlayerCiv(i) == cCivLoki)
rmPlaceObjectDefAtLoc(startingMyCivSettlementID, i, rmPlayerLocXFraction(i),
rmPlayerLocZFraction(i));

Page 119

4)

else
rmPlaceObjectDefAtLoc(startingSettlementID, i, rmPlayerLocXFraction(i),
rmPlayerLocZFraction(i));

b

So now if civilization is Loki it places our custom built town center otherwise a it
places a standard one.

Now scroll down until you find the line:
// Ramp Towers.

Immediately following this you will find the definition of the towers.

int avoidTower=rmCreateTypeDistanceConstraint("towers avoid towers", "tower", 8.0);

for(i=1; <cNumberPlayers)

{
int startingTowerID=rmCreateObjectDef("Starting tower"+i);
int towerRampConstraint=rmCreateCliffRampConstraint("onCliffRamp"+i, rmArealD("player"+i));
int towerRampEdgeConstraint=rmCreateCliffEdgeMaxDistanceConstraint("nearCliffEdge"+i,

rmArealD("player"+i), 2);

rmAddObjectDefItem(startingTowerID, "tower", 1, 0.0);
rmAddObjectDefConstraint(startingTowerID, avoidTower);
rmAddObjectDefConstraint(startingTowerID, towerRampConstraint);
rmAddObjectDefConstraint(startingTowerID, towerRampEdgeConstraint);
rmAddObjectDefToClass(startingTowerID, classTower);
rmPlaceObjectDefInArea(startingTowerID, i, rmArealD("player"+i), 6);

/* backup to try again */

if(rmGetNumberUnitsPlaced(startingTowerID) < 4)

{
int startingTowerID2=rmCreateObjectDef("Less Optimal starting tower"+i);
rmAddObjectDefItem(startingTowerID2, "tower", 1, 0.0);
rmAddObjectDefConstraint(startingTowerID2, avoidTower);
rmAddObjectDefConstraint(startingTowerID2, towerRampConstraint);
rmAddObjectDefToClass(startingTowerID2, classTower);
rmPlaceObjectDefInArea(startingTowerID2, i, rmArealD("player"+i), 1);

b

b

In the Acropolis script, the random map has a preferred tower placement process
(next to each ramp) and a fall back. In other scripts with is not necessary (as
discussed below). We need to change this to allow for two tower types and a check
on the players civilization.

int avoidTower=rmCreateTypeDistanceConstraint("towers avoid towers", "tower", 8.0);
int avoidMyCivTower=rmCreateTypeDistanceConstraint("towers avoid tower", "MyCiv Tower", 8.0);
for(i=1; <cNumberPlayers)
{
int startingTowerID=rmCreateObjectDef("Starting tower"+i);
int towerRampConstraint=rmCreateCliffRampConstraint("onCliffRamp"+i,
rmArealD("player"+i));
int towerRampEdgeConstraint=rmCreateCliffEdgeMaxDistanceConstraint("nearCliffEdge"+i,
rmArealD("player"+i), 2);
rmAddObjectDefltem(startingTowerID, "tower", 1, 0.0);
rmAddObjectDefConstraint(startingTowerID, avoidTower);
rmAddObjectDefConstraint(startingTowerID, towerRampConstraint);
rmAddObjectDefConstraint(startingTowerID, towerRampEdgeConstraint);
rmAddObjectDefToClass(startingTowerID, classTower);

Page 120

int startingTowerID2=rmCreateObjectDef("Less Optimal starting tower"+i);
rmAddObjectDefltem(startingTowerID2, "tower", 1, 0.0);
rmAddObjectDefConstraint(startingTowerID2, avoidTower);
rmAddObjectDefConstraint(startingTowerID2, towerRampConstraint);
rmAddObjectDefToClass(startingTowerID2, classTower);

int startingMyCivTowerID=rmCreateObjectDef("Starting MyCiv tower"+i);

int MyCivTowerRampConstraint=rmCreateCliffRampConstraint("onCliffRamp2"+i, rmArealD("player"+i));

int MyCivTowerRampEdgeConstraint=rmCreateCliffEdgeMaxDistanceConstraint("nearCliffEdge2"+i,
rmArealD("player"+i), 2);

rmAddObjectDefItem(startingMyCivTowerID, "MyCiv Tower", 1, 0.0);

rmAddObjectDefConstraint(startingMyCivTowerID, avoidMyCivTower);

rmAddObjectDefConstraint(startingMyCivTowerID, MyCivTowerRampConstraint);

rmAddObjectDefConstraint(startingMyCivTowerID, MyCivTowerRampEdgeConstraint);

rmAddObjectDefToClass(startingMyCivTowerID, classTower);

int startingMyCivTowerID2=rmCreateObjectDef("Less Optimal starting MyCiv tower"+i);
rmAddObjectDefItem(startingMyCivTowerID2, "MyCiv Tower", 1, 0.0);
rmAddObjectDefConstraint(startingMyCivTowerID2, avoidMyCivTower);
rmAddObjectDefConstraint(startingMyCivTowerID2, MyCivTowerRampConstraint);
rmAddObjectDefToClass(startingMyCivTowerID2, classTower);

if(rmGetPlayerCiv(i) == cCivLoki)
rmPlaceObjectDefInArea(startingMyCivTowerID, i, rmArealD("player"+i), 6);

// Check if their are 4 towers and try again if not
if(rmGetNumberUnitsPlaced(startingMyCivTowerID) < 4)

{
rmPlaceObjectDefInArea(startingMyCivTowerID2, i, rmArealD("player"+i), 1);
b
b
else
{
rmPlaceObjectDefInArea(startingTowerID, i, rmArealD("player"+i), 6);
// Check if their are 4 towers and try again if not
if(rmGetNumberUnitsPlaced(startingTowerID) < 4)
{
rmPlaceObjectDefInArea(startingTowerID2, i, rmArealD("player"+i), 1);
b
b

}

If you did not really follow this do not worry too much. The code itself works and
you just need to ensure that the three references to the custom tower proto unit
definition - MyCiv Tower and the one reference to the borrowed civilization — Loki,
are correct for your civilization and then you can just cut and paste this into you
random map file. In the other random maps the tower definition is not as complex.
In these just after you enter your settlement details you will see the line heading:

// towers avoid other towers

followed by the following standard tower definition:

int startingTowerID=rmCreateObjectDef("Starting tower");
rmAddObjectDefltem(startingTowerID, "tower", 1, 0.0);
rmSetObjectDefMinDistance(startingTowerID, 22.0);
rmSetObjectDefMaxDistance(startingTowerID, 28.0);
rmAddObjectDefConstraint(startingTowerID, avoidTower);

Page 121

5)

Immediately after this you would insert the new tower definition for your civilization:

int startingMyCivTowerID=rmCreateObjectDef("Starting MyCiv tower");
rmAddObjectDefItem(startingMyCivTowerID, "MyCiv Tower", 1, 0.0);
rmSetObjectDefMinDistance(startingMyCivTowerID, 22.0);
rmSetObjectDefMaxDistance(startingMyCivTowerID, 28.0);
rmAddObjectDefConstraint(startingMyCivTowerID, avoidMyCivTower);

This is a simple tower definition that just tries to spread them evenly around the
town center.

Save the files and put then into your production \RM (AoM) or \RM2 (AoMTT) folders
(they do not need converting); start the game and go through the Single Player
Random Map set up. Select the appropriate civilization and select your new random
map. Press start.

You should be presented with a game screen that has place your custom town center
and towers and your starting units should have been created by the TECHTREE(X).

If something went wrong, you will get a script load failure. So check that the above
changes were made correctly, mis-spelling is the usual problem so just make sure all
you MyCiv changes were correct.

Once you have the first random map working it is relatively straight forward to apply the
changes to the other random map scripts and .xml files.

Page 122

20. Artificial Intelligence

The final area for discussion is Artificial Intelligence. If you create more than one civilization
and want them to battle, or if you want to play a standard civilization against your new one,
the Computer will need to control one of them.

The Al unit is smart enough to do a lot of things, but others it will need help with. This will
mean creating the Al scripts required to support your civilizations.

The extent to which you will need to change the standard Al scripts will be very dependent
on the new units you create and the only way to find out is to use the standard Al scripts
and see what is happening.

If your characters are equivalent to the standard characters, you may not need to do much.
The standard AI can identify your economic units, and various military units and its standard
routines generally search for unit types.

On the other hand if you do some slightly off-beat things (for example in my Mordor
civilization I used Goblins as Builders and Herdable animals — yes the Orcs eat them), the
game has problems, and you need you need to be explicit about who does what. Similarly,
in my Shire civilization it uses Hobbits, Elven Artisans, Elven Gatherers and Men of Rohan as
economic units but with different building skills. Unfortunately the game seemed to have
difficulty with this.

You will also find that the standard Al does some specific things dependent on the
civilization and these will no longer work.

If you find it necessary to create a new set of Al files, my only advice is to create a set that
is specifically designed for your civilizations, rather than trying to extend the standard ones.
If you download my LOTR Civ Pack and look at the Al files included with for the two
civilizations, this will hopefully head you in the right direction.

If not post your problems and I may be able to address them.

Page 123

21. Where to Next?

The joy of AoM modding is that there always seems to be new areas to explore. Hopefully
in the near term, a more elegant way to create civilizations will be found and this may
unlock more modding opportunities. Creating models for the game is also an area where
only a few people are making inroads. After only 6 months of modding, I certainly think
there is a lot more to learn.

Hopefully this guide will get you on the start to some modding success and I wish you the
best of luck and look forward to seeing your creations.

Page 124

